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 چکیده

 و اندازه تعیین مسئله برای هدفه ریزی خطی عدد صحیح مختلط دودر این مقاله یک مدل برنامه 

 عدم شرایط تحت  شدنی فاسد خوراکی صنعت یک عنوان به ماست صنعت برای تولید بندیزمان

 نزما و کل هزینه همزمان رساندن حداقل به اهداف مدل پیشنهادی، .شود می ارائه تقاضا اطمینان

شود، از ی متمایز فرآوری ماست را شامل میهابسیاری از ویژگی ،مدل پیشنهادی .است تولید اتمام
هداری نگای بندی ، حداقل و حداکثر اندازه تولید ، زمان آینده بره ماندگاری ، تنظیمات ، نرخ بستهجمل

 چند و محصول چند موجودی کنترل شامل ، پیشنهادی مدل این، بر علاوه محصولات و تقاضای فازی.

رویکرد  ما یک .شودمی بندیطبقه استراتژیک - عملیاتی مدل یک عنوان به رو، این از. است دوره
هادی فازی را برای حل مدل پیشن آرمانیریزی ریزی امکانی فازی و برنامهترکیبی متمرکز بر برنامه

ن گیرندگات و اعتبار مطابق با ترجیح تصمیمکنیم ، جایی که اقدامات امکان ، ضرورئه میدو هدفه ارا

تحلیل وگیری و تجزیهبندی تولید، تصمیمقایسه با مدل سنتی اندازه و زماندر م شود.اتخاذ می

 انجام آمده، دست به کارایی مقدار سه هایداده اساس بر  DMs برای حساسیت بهتری را می توان

 اهر رویکرد و پیشنهادی مدل جیسنامکان ارزیابی برای ،ماست صنعت از دست آمدهه های بداده .داد

 ریاضی مدل اثربخشی حساسیت، وتحلیلتجزیه و روش اعمال از آمده دست به نتایج. شد استفاده حل
 .داد نشان را پیشنهادی روش همچنین و
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Abstract 
 This paper proposes a bi-objective mixed-integer linear programming model for 

formulating a lot- sizing and scheduling problem for the perishable yogurt industry 

under demand uncertainty. The objectives of the proposed model are to 

simultaneously minimize the overall cost and the total production completion time.  

The proposed MILP formulation integrates many distinctive features of yogurt 

processing, including shelf-life constraints, setups, packaging rates, minimum and 

maximum lot size limits, future time for holding products, and fuzzy demand. 

Additionally, the proposed model, including inventory control, is a multi-product 

and multi-period model hence, it is categorized as an operational-strategic model. 

We introduce a hybrid approach focused on fuzzy possibility programming and a 

fuzzy goal programming approach for solving the suggested bi-objective model, 
where possibility, necessity and credibility measures are adopted according to the 

decision makers’ preference.  Compared to the traditional model of lot sizing and 

scheduling, better decision-making and sensitivity analysis for DMs can be made 

based on the three obtained efficiency values. Data from the yogurt plant were used 

to assess the feasibility of the proposed model and solution approach. The results 

obtained from applying the method and sensitivity analysis showed the effectiveness 

of the mathematical formulation as well as the proposed solution method. 

 

Keywords: Lot sizing and scheduling problem, Perishable products, Yogurt plant, 

Uncertainty, Fuzzy possibility programming, Goal programming 

approach 
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1. Introduction 
The food industry is an important industrial activity and among the sustainable and 

fast-growing industries. Day-by-day newer innovations are being launched to get 

better quality of foods, especially dairy products including yogurt. The high market 

competition and the rapid growth of the product range, the profile of demand, and 

the perishability of raw material and finished goods make the food industry distinct 

from other industries. Poor production planning and production schedules have 

caused both material trash and supply insufficiency.  As a consequence of these 

considerations, organizations are investigating on the possibilities of turning those 

complexities into strategic features through progressively enhancing their activity. 

The effective combination of production and scheduling planning is one of the key 

tasks for achieving this objective [1], [2]. 

In the food industry, where sequencing-dependent changeovers (setups) are very 

important, the decision of lot sizing and scheduling, which is, generally, taken 

heuristically, is a very hard task and often failed, where decision-makers solve the 

problem of lot-sizing sequentially first without considering the changeovers (setup 

times), and then the problem of scheduling. Since setups are not adequately planned 

for, so infeasible schedules can be produced. As a result, the decision-makers have 

to re-initiate the procedure, and even after several attempts, a near-optimal schedule 

is only reached [3], [4]. Use of an accurate mathematical approach that integrates all 

manufacturing criteria enables the incorporation of the problem of lot-sizing and 

scheduling, and thus, contributing to further feasible solutions. The use of 

simultaneous production planning and scheduling is, therefore, effective as proposed 

by a number of similar studies (e.g. [1], [7], [9], [12], and [25]).  

When the perishability of products is taken into consideration, the issue of lot 

size and schedules becomes more complicated and challenging [6]. The perishability 

of products is of great importance in the food industry. Inventory management and 

inter-related strategic decisions are directly influenced by limited product shelf-life 

[31]. Lütke Entrup et al. [6] indicated that yogurt is a perishable product, and in 

order to calculate the market value of the final product, it creates a shelf-life-

dependent pricing component. Amorim et al. [5], [21] investigated the perishability 

aspects related to diary and yogurt processing in the food sector. 

On the other hand, uncertainty is addressed in this paper as a crucial issue.  

Demand uncertainty in the yogurt industry is typical and neglecting the uncertainty 

of demand can also be considered as a modeling error. This modeling error can lead 

to a rise in costs, and even lost sales and unsatisfied customers. The complication of 

dealing with the problem of lot sizing and scheduling with uncertainty is to make a 

decision on how to present uncertainty parameters among the different approaches. 
Uncertainty in demand could be designed by stochastic programming and fuzzy 

programming. There is currently little research on the subject of lot size and 

scheduling that considers the uncertainty of demand. Douglas Alem et al. [23] 

introduced the General Lot-Sizing and Scheduling Problem (GLSP) under demand 
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uncertainty using a robust optimization budget-uncertainty set and a multistage 

stochastic programming. Via the Monte Carlo simulation process, the advantage of 

each technique was measured. Curcio et al. [24] studied a multi-stage stochastic 

programming model. The uncertainty of demand was represented using the moment-

matching technique by scenario trees. Scenario reduction was used to select the 

scenarios that best represent the initial set.  

In many cases, decision-makers do not have sufficient information for adjusting 

the demands’ probability distribution, which restricts the effectiveness of stochastic 

programming in cooperation with uncertainty [22]. However, decision-makers prefer 

to get an unknown parameter estimated on their own, which can be pessimistic, 

optimistic, and moderately optimistic to predict. Using fuzzy logic to overcome 

uncertainty based on expert knowledge and insights is also advantageous [32, 34]. 

The outcome of this study is a model that uses a bi-objective mixed-integer 

linear programming the model is developed for formulating a lot-sizing and 

scheduling for the yogurt manufacturing under uncertain demand in order to 

minimize the overall cost of the production and minimize the completion time of the 

products that can also affect energy consumption. Generally, the main contributions 

of the present study are as follows: 

• Designing a lot-sizing and scheduling model for multi-product, multi-period 

perishable yogurt industry considering demand under uncertainty. 

• Proposing a fuzzy possibility programming and a fuzzy goal programming 

approach to solve the suggested bi-objective model under uncertainty. 

• Conducting the suggested formulation and solution method in a case study and 

evaluating its effectiveness. 

The remainder of the work is structured as follows. The literature relevant to the 

problem is discussed in part 2. Problem formulation is presented in Part 3. The 

solution method is provided in part 4. The suggested model is tested and validated in 

part 5. Part 6 is devoted to the results report. Part 7 discusses the sensitivity analysis. 

Finally, part 8 outlines the conclusions. 

 

2. Literature review 
2.1. Simultaneous lot-sizing and scheduling 
Due to its relevance in the financial system and considering the complexities of 

solving it in many realistic ways, the simultaneous lot-sizing and scheduling issue 

has gained a lot of research interest, particularly with regard to sequence-dependent 

setups. Copil et al. [19] presented a really comprehensive review of simultaneous LS 

and scheduling problems, including sensible discussion of implementations of CLSP 

(big- bucket) and GLSP (small-bucket) in different industries. A systematic analysis 

of DLSPs for single-item and changes included correlation with all other decisions 

was proposed by Brahimi et al. [18]. 

Kopanos et al. [1] researched the issue of lot-sizing and scheduling in a yogurt 
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production facility. They proposed a hybrid discreet/continuous-time MILP model 

with product family and a sequence-dependent setup time and costs. The issue in 

question focused primarily on the packaging level, while time and capability 

limitations were placed on pasteurization, homogenization, and fermentation 

processes. However, they considered that the scheduling problem only involves the 

packaging stage. In another article, Kopanos et al. [2] suggested a planning and 

scheduling model with capacity limitations. The model targets to reduce the total 

costs, including inventory, operating, and product family changeover costs. 

Doganis and Sarimveis [9] suggested a MILP formulation for the packaging line 

with a sequence-dependent setup time and cost for a single machine, taking into 

consideration all typical limitations found in the scheduling of production (material 

balances, machine capacity, and inventory limits). The model, however, was 

restricted to a single production line. They modified their model to involve multiple 

parallel machines in another paper [10]. The new approach includes features that 

enable it to resolve manufacturing issues. However, it does not involve assumptions 

on multi-stage production and lacks some manufacturing features, including lifespan 

of products. 

 

Marinelli et al. [12] suggested parallel packaging lines with sequence-

independent setup time and cost and shared buffers for capacitated lot-sizing and 

scheduling model. Then to solve it, a two-step optimization decomposition process 

was applied. 

Stefansdottir et al. [14] researched the issue of lot-sizing and scheduling issues to 

reduce the number and size of set-ups in the standard process-setting of cheese 

production in no-wait flow shops. 

Kopanos et al. [17] proposed a multi-site, multi-product MILP model for the 

simultaneous systematic production and distribution through focusing on a hybrid 

discreet/continuous time frame in a semi-continuous food industry. The presented 

mathematical model’s difficulty arises within the incorporation of different 

approaches of modeling and even in specific processes of production and 

distribution. 

Sel et al. [18] discussed the issue of the dairy sector concerning the embedded 

planning and scheduling of the set yogurt industry. The integrated problem was split 

into two sub-problems. For solving the sub-problems, heuristic decomposition was 

proposed. 

 

2.2 Explicitly perishable feature and uncertainty in production planning 

and scheduling  
Although shelf-life and life-time are significant main characteristics of 

perishable products, the perishability of food products, has not been explicitly 

addressed in previous papers. In this section we will review some works that 

explicitly addressed the perishability featured for products in production planning 
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and scheduling. Amorim et al. [5] suggested two multi-objective methodologies for 

MTO (make to order) and MTO-MTS (hybrid make to order and make to stock) 

approaches for simultaneous lot-sizing and planning of product shelf-life and block 

planning. Non-dominated Sorting Genetic Algorithm II (NSGA II) was used to solve 

the issue. 

Entrup et al. [6] also implemented three different production planning and 

scheduling models for perishable foods with objective functions that incorporate the 

shelf-life of food products. They also introduced an MILP formulation with a block 

planning method. 

Bilgen and Celebi [8] gave rise to the stochastic features of the dairy 

manufacturing process sector and developed the shelf-life constraints of the MILP 

model to increase the freshness of the product. In addition, they developed a hybrid 

approach by integrating the MILP and simulation methods. Production time is 

defined to be a dynamic factor in the hybrid method and is iteratively modified by 

simulation and optimization model results. 

Sarimveis and Doganis [11] suggested a new formulation by considering the cost 

of product life-span in the objective function. The extended model takes into 

account the shelf-life constraints and optimized the equilibrium between the profit-

contributing factors and the cost factors through a minimization of the time between 

manufacture and distribution. 

Bilgen et al. [13] proposed a novel method for a continuous, multi-stage, 

development planning issue that occurs in the dairy sector. The issue involves 

production features unique to the dairy sector, including shelf life, packaging rates, 

and storage intermediate. 

Kopanos et al. [16] proposed a multi-product and multi-stage MILP model and a 

solution approach to solve the complicated problems in food industries’ production 

scheduling with a short life-span of intermediate mixtures. The key characteristics of 

the suggested solution are the integrated production steps and the use of high valid 

integer breaks, choosing shorter computing cycles. 

Kopanos et al. [15] developed a production planning and scheduling for a multi-

stage, real-world food process with a restricted shelf-life of intermediate mixtures in 

the aging stage. They suggested an effective MIP on a continuous-time basis 

according to an appropriate sequencing decision-making modeling approach, 

integrated modeling of all stages of development, and implementation of a series of 

influential tightening restrictions to improve computational efficiency. 

Although the majority of the previous studies on the modeling of lot-sizing and 

scheduling problems have explicitly addressed the perishability featured for 

products, but ignored the uncertainty of demand. The main motivation for a lot-

sizing and scheduling problem in the food industry with uncertain demand is that 

within the deterministic demand, there will never be a spoiled product unless the 

minimum lot-sizes are very large compared to the demand orders. However, 

concerning the real-world challenges, the food industries face huge difficulties in 
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decreasing the amount of wastage from non-selling products, whereas, only a 

limited number of researchers have considered the lot-sizing and scheduling 

problems with uncertain demand. 

In many cases, there is inadequate information for decision-makers to adjust the 

demand probability distribution [22], which restricts the effectiveness of stochastic 

programming in cooperation with uncertainty. However, decision makers prefer to 

get an unknown parameter estimated on their own, which can be pessimistic, 

optimistic, and moderately optimistic to predict [32, 34]. Using fuzzy logic to 

overcome uncertainty relies on expert knowledge and perspectives is also 

advantageous. In a fuzzy programming model, there are different categories of fuzzy 

numbers most typically used, namely trapezoidal fuzzy numbers and triangular 

fuzzy numbers. In this analysis, we chose triangular fuzzy numbers to model 

uncertain demands.  
Additionally, fuzzy possibility measure to build the fuzzy chance constraint has 

increasingly received the interest of many researchers in different areas such as 

biofuel supply chain (Tong K. et al., 2014 [32], meat supply chain (Mohammed, A. 

et al., 2017) [33], vehicle routing scheduling (Mousavi, S. M., et al.  2013) [34], 

inventory routing problem, Niakan, F., et al. 2015) [35], closed-loop supply chain 

network design (Torabi, S. A. et al., 2016) [36].  A fuzzy event will fail even though 

its possibility is 1; however, a fuzzy activity must hold when its credibility is 1 and 

it must fail when its credibility is 0. This is because of the fact that fuzzy measure of 

credibility is self-dual but fuzzy possibility evaluation is not [37]. Thus the fuzzy 

credibility metric is most acceptable for construction of restrictions on fuzzy chance 

and will be used in this research besides the use of possibility and necessity metrics. 

 

2.3 Research gap 
To the best of our knowledge, there is no study in the area of lot-sizing and 

scheduling problem that adopts possibalitic programming (PP) to deal with the 

uncertain demand. Hence, in this research, PP approach is integrated with fuzzy goal 

programming for integrating lot-sizing and scheduling problem for the food industry 

with demand uncertainty, which is typical in this industry, especially in the dairy 

and yogurt industry. 

Overall, the review of literature indicates that there are some gaps in the yogurt 

industry in the field of lot-sizing and scheduling: 

 Considering the lot-sizing and scheduling as a multi-objective problem in the 

yogurt industry, decision-makers often require two or more indicators of efficiency 

of the production as multi-objective. 

 Considering this problem under demand uncertainty. 

 Using the possibalitic approach to cope with uncertain parameters and to get 

a crisp model from the uncertain model. 
 Applying fuzzy goal programming to address the suggested bi-objective model. 
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3. MATHEMATICAL FORMULATION 
3.1. PROBLEM STATEMENT 

The yogurt sector tends to operate in a competitive environment. The issue of 

production planning discussed in this work is relied on a case study of a yogurt firm. 

Milk follows a set of changes relevant to a certain total process in the dairy field. In 

a complicated process, the specific products are prepared, involving handling and 

preparation of raw milk, pasteurization, sterilization, fermentation, and packaging. 

Such manufacturing processes, also sometimes referred to as “continuous single-

stage processes”, are used to manufacture different perishable goods. Special care 

should be taken to achieve consistent quality, monitoring of allergens, batch quality 

control, and optimal product freshness. The company's main priority is to 

incorporate a solution able to enhance key efficiency measures, including total 

completion time minimization, which reflects on resource efficiency and cost 

minimization. 

Units at the stage are non-identical in the sense that their applicability for 

handling goods as well as in their processing speeds are varied. The bottleneck of a 

yogurt manufacturing plant is the pasteurization, sterilization, fermentation, and 

packing processes mainly considering the low manufacturing speeds comparing to 

the flow rates previous phases and the design of the batch size of the process. It is 

important to tightly coordinate the production of intermediate and final products. 

Tank capacity, process time change, flow rate, and a variety of other technological 

restrictions must be considered for making a manufacturing process operable. 

Products are manufactured in lots and should be processed within the full capacity 

of the tank. Resources and tanks clean-up could be particularly complex. The shelf-

life makes the manufacturing procedure a more inherent complexity. The assumed 

manufacturing process has a certain unique characteristic that needs serious attention 

in the context of production planning. The main variables to be determined in this 

process are the amount produced within every period of time, the quantity of final 

products held in inventory, and the completion time. The objectives are to minimize 

the total cost such as setup, inventory holdings and production costs, and minimizing 

the total completion time. 

In order to produce and package multiple items in processing operations, a 

variety of parallel processing equipment (mixing tanks and packing lines) are 

available. Many technical restrictions should comply; each resource is unable to 

handle more than one product at a time, but different products can share a similar 

processing resource and the same product can be processed in parallel by different 

resources. The manufacturing resource is initially modified to manufacture yogurt 

items in a specified package with a specified taste. Stopping the production and 

making possible modifications are essential in order to manufacture another yogurt 

product with a different pack size and flavor.  Hence, different costs and operational 

restrictions should be taken into consideration in designing the production schedule. 
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Due to the use of tanks for fermentation of different dairy products, the 

fermentation processes are only taken into account by restricting the capacity and 

implementing minimum lot sizes for the packaging lines. In addition, product 

distribution is not considered in the models because it is mostly done out by 

supermarket organizations [6]. 

To formulate the problem, we first propose inventory and time constraints in a 

production environment, including semi-continuous flow lines, multiple feed lines 

(as parallel shared common resources), and series-parallel machines (fillers). The 

multi-objective function involves the optimization of both total production costs and 

completion time. 

In addition the proposed mathematical model enjoys the following features:  

 Tanks could feed any production line without additional costs.  

 Manufacturing system includes parallel and unrelated lines.  

 To change the size of the package in the production lines, the set-up costs are 

endorsed. 

 The manufacturing line is a continuous stage, neglecting the middle stages 

and the work in progress. 

 Set-up times and costs are sequence-dependent for the production lines. 

 Shelf-life issues are explicitly included in the model.  

 Owing to perishable features, the handling of the product inventory is based 

on FIFO. 

 Like other food industries, in the yogurt production line, we should consider 

the clean in place (CIP) that is run after each lot 

 The time horizon for scheduling is one day. 

 The lower bound of lot sizes is specified by profits, and the upper bound of 

lot sizes is related to the fermentation capacity. 

 

3.2 Modelling approach  
In this part, we present an MILP formulation with demand uncertainty. The model 

specifies optimal schedules with the goal of minimizing the production makespan 

and the overall cost of production (holding, changeover, and operation) as a measure 

for efficiency of the production, assigning of items to the equipment, ordering of the 

manufacturing products on each machine, and the quantity of production on each 

product. The specific notation required for the models is described below. 

Sets 

𝑖 ∈ 𝐼: Intermediate mixture  

𝑝, 𝑘 ∈ 𝑃: Finished products  

𝑗 ∈ 𝐽: Packaging unit 

𝑡 ∈ 𝑇: Scheduling time periods 
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Parameters  

𝑑𝑝,𝑡:Demand of product 𝑝 at period t 

ℎ𝑝,𝑡: Inventory cost for product 𝑝 at period t  

𝑐ℎ𝑝,𝑘,𝑗,𝑡: Sequence-dependent setup cost between both products (𝑝,𝑘) in 

packaging unit 𝑗 at time t 

Cf : Fermentation cost 

𝑐𝑝𝑝,𝑗,𝑡: Operating cost for packaging product 𝑝 in unit 𝑗 period t 

𝑇𝑝,𝑗: Time required for preparing the product 𝑝 on unit j 

𝑠𝑑𝑝,𝑘,𝑗: Sequence-dependent changeover time between product 𝑝 and product 𝑘 

in equipment unit 𝑗 at time t 

 ∅𝑝,𝑡: The necessary time quality control  

𝑟𝑎𝑡𝑒𝑝,𝑗: Packaging rate for product 𝑝 at packaging unit 𝑗  

𝑄𝐼𝑖,𝑡
𝑚𝑖𝑛:Minimum processing lot-size 

𝑄𝐼𝑖,𝑡
𝑚𝑎𝑥: Maximum processing capacity 

𝑄𝐿𝑝,𝑗
𝑚𝑖𝑛,𝑄𝐿𝑝,𝑗

𝑚𝑎𝑥 : Minimum and maximum production amount of products 

𝑇𝑝𝑝,𝑗,𝑡
𝑚𝑎𝑥,𝑇𝑝𝑝,𝑗,𝑡

𝑚𝑖𝑛: Maximum and minimum run time for product 𝑝 in unit 𝑗 at time 𝑡 

𝐼𝑝,𝑡
𝑠𝑎𝑓𝑡𝑦

: Safety stock for product 𝑝 at period t 

𝐿𝑡: Scheduling horizon 

𝐼0 : Initial inventory 

𝑠𝑙: Lifetime of products 
M: A very large number 

 

Decision variables 

𝑄𝑝,𝑗,𝑡: Packaging quantity of each product  

𝐼𝑝,𝑡:The amount of inventory of each product at the end of the day 

𝑇𝑝𝑝,𝑗,𝑡: Packaging time of product 𝑝 in unit 𝑗 at time 𝑡 

𝐶𝑝,𝑗,𝑡: Completion time of product 𝑝 in unit 𝑗 at time t 

𝑌𝑝,𝑗,𝑡 :Binary variables showing whether product 𝑝 has been allocated to unit j at 

time t 

𝑋𝑝,𝑘,𝑗,𝑡:Binary variables indicating whether product 𝑝 is handled completely 

before 𝑘, when two products are allocated at the same time 𝑡 to the same unit 𝑗 
𝑉𝑖,𝑡: Binary variables indicating the assignments for producing intermediate 

product i at processing cycle t on the production unit 

 

3.3 Mathematical formulation 
In this part, we propose a bi-objective MILP method. The management of 

product inventory is focused on FIFO because of the characteristics of perishable 

products. To clarify, it is assumed that the first items produced are the first ones 

sold. As a measure of the efficiency of production, the proposed model aims to 
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reduce the total production costs, which include change-over, inventory, operational 

and fermentation costs and minimization of the makespan of production. 

The objective functions: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑∑ℎ𝑝,𝑡 . 𝐼𝑝,𝑡
𝑡𝑝

+ ∑∑∑∑𝑋𝑝,𝑘,𝑗,𝑡 . 𝑐ℎ𝑝,𝑘,𝑗,𝑡
𝑡𝑗𝑘𝑝

+∑∑∑ 𝑐𝑝𝑝,𝑗,𝑡. 𝑇𝑝𝑝,𝑗,𝑡
𝑡𝑗𝑝

+∑∑Cf.

𝑡𝑖

 𝑉𝑖,𝑡                 (1) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶max                                                                                                    (2) 
Constraints: 

Timing Constraints: 

 

𝑇𝑝𝑝,𝑗,𝑡 =
𝑄𝑝,𝑗,𝑡

𝑟𝑎𝑡𝑒𝑝,𝑗
                                                        ∀𝑝, 𝑗, 𝑡                                                (3)  

 

𝑇𝑝𝑝,𝑗,𝑡
𝑚𝑖𝑛. 𝑌𝑝,𝑗,𝑡 ≤  𝑇𝑝𝑝,𝑗,𝑡  ≤

𝑇𝑝𝑝,𝑗,𝑡
𝑚𝑎𝑥. 𝑌𝑝,𝑗,𝑡                         ∀𝑝, 𝑗, 𝑡                                                                  (4)    

 

𝐶𝑝,𝑗,𝑡 −  𝑇𝑝𝑝,𝑗,𝑡 ≥ (∅𝑝,𝑡 + 𝑇𝑝,𝑗). 𝑌𝑝,𝑗,𝑡 +

∑ 𝑠𝑑𝑝,𝑘,𝑡𝑘≠𝑝 . 𝑋𝑝,𝑘,𝑗,𝑡             ∀𝑝, 𝑗, 𝑛                                                                (5)  

 

𝐶𝑝,𝑗,𝑡
≥ 𝐿𝑡 . 𝑌𝑝,𝑗,𝑡                                                                     ∀𝑝, 𝑗, 𝑡                          (6) 

 

Time-dependent changeovers:   

 

𝐶𝑘,𝑗,𝑡 −  𝑇𝑝𝑘,𝑗,𝑡 ≥ 𝐶𝑝,𝑗,𝑡 + 𝑠𝑑𝑝,𝑘,𝑗 −𝑀. (1 − 𝑋𝑝,𝑘,𝑗,𝑡)  − M. (2 − 𝑌𝑝,𝑗,𝑡 
− 𝑌𝐾,𝑗,𝑡  )      ∀𝑝, 𝑘, 𝑗, 𝑡                                                         (7) 

 

𝐶𝑝,𝑗,𝑡 −  𝑇𝑝𝑝,𝑗,𝑡 ≥ 𝐶𝑘,𝑗,𝑡 + 𝑠𝑑𝑝,𝑘,𝑗 −𝑀.𝑋𝑝,𝑘,𝑗,𝑡 −M. (2 − 𝑌𝑝,𝑗,𝑡 
− 𝑌𝐾,𝑗,𝑡  )     ∀𝑝, 𝑘, 𝑗, 𝑡                                                          (8) 

  

 

Allocation and sequencing constraints: 
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∑𝑋𝑝,𝑘,𝑗,𝑡
𝑘

≤ 𝑌𝑝,𝑗,𝑡              ∀𝑝, 𝑡, 𝑗 ∈ 𝐽                                                    (9) 

 

∑𝑋𝑘,𝑝,𝑗,𝑡
k

≤ 𝑌𝑝,𝑗,𝑡              ∀𝑝, 𝑡, 𝑗 ∈ 𝐽                                                     (10) 

 

∑𝑌𝑝,𝑗,𝑡 
𝑗

≤ 1          ∀𝑝, 𝑡                                                                             (11) 

∑∑𝑋𝑝,𝑘,𝑗,𝑡
𝑘

+

𝑝

1 =∑𝑌𝑝,𝑗,𝑡 
𝑝

 ∀𝑡, 𝑗                                                           (12) 

 

𝑉𝑖,𝑡 ≥∑𝑌𝑝,𝑗,𝑡 
𝑗

        ∀𝑖, 𝑝, 𝑡                                                                           (13) 

 

Capacity constraints:  

 

𝑄𝐿𝑝,𝑗
𝑚𝑖𝑛. 𝑌𝑙,𝑗,𝑡 ≤ 𝑄𝑝,𝑗,𝑡 ≤ 𝑄𝐿𝑝,𝑗

𝑚𝑎𝑥. 𝑌𝑝,𝑗,𝑡       ∀𝑝, 𝑡, 𝑗 ∈ 𝐽𝑙                                (14)   

 

𝑄𝐼𝑝,𝑗
𝑚𝑖𝑛. 𝑉𝑖,𝑡 ≤∑∑𝑄𝑝,𝑗,𝑡

𝑗𝑝

≤ 𝑄𝐼𝑝,𝑗
𝑚𝑎𝑥. 𝑉𝑖,𝑡      ∀𝑖, 𝑡                                    (15)   

 

Mass balance constraints: 

 

𝐼𝑝,𝑡 ≥ 𝐼0 +∑𝑄𝑝,𝑗,𝑡
𝑗

+ 𝑑𝑝,𝑡         ∀𝑝, 𝑡: 𝑡 = 1                                              (16)       

 

𝐼𝑝,𝑡 ≥ 𝐼𝑝,𝑡−1 +∑𝑄𝑝,𝑗,𝑡
𝑗

+ 𝑑𝑝,𝑡         ∀, 𝑡: 𝑡 > 1                                         (17) 

𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡′

𝑡+𝑠𝑙

𝑡′=𝑡

             ∀𝑝, 𝑡 ≤ 𝑇 − 𝑠𝑙                                                        (18) 

𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡′

𝑇

𝑡′=𝑡+1

         ∀𝑝, 𝑡 > 𝑇 − 𝑠𝑙                                                       (19) 



 1400 تابستان  ،2 شماره ،6 دوره ــــــــــــــــــــــــــــــ گیری نوین در تصمیم هایپژوهش             

 

193 

 

𝐼𝑝,𝑡 ≥ 𝐼𝑝,𝑡
𝑠𝑎𝑓𝑡𝑦

                           ∀𝑙, 𝑡                                                                 (20) 

 

 
In Constraint (3),  𝑇𝑝𝑝,𝑗,𝑡 means the packaging time (the processing time) of 

product 𝑝 in unit 𝑗 at time 𝑡  which is equal to the packed quantity 𝑄𝑝,𝑗,𝑡 of product 𝑝 

at the same packaging unit divided by the packaging rate 𝑟𝑎𝑡𝑒𝑝,𝑗  of product 𝑝. 

Soman et al. [24] mentioned that in the food industry, which has high capacity of 

utilization, the production rate 𝑟𝑎𝑡𝑒𝑝,𝑗 is considered fixed, where reducing the 

production rate can affect the quality of the products. Constraint (4) enforces the 

upper and lower bounds on the packaging time 𝑇𝑝𝑝,𝑗,𝑡. Constraints (5) imposes that 

the start time (𝐶𝑝,𝑗,𝑡 −  𝑇𝑝𝑝,𝑗,𝑡) of product 𝑝 on unit 𝑗 and time 𝑡 has to be greater 

than the necessary time quality control time ∅𝑝,𝑡, plus the time required for 

preparing the product 𝑝 on unit j and fermentation recipe and maintenance or other 

technical issues, and plus the changeover time 𝑠𝑑𝑝,𝑘,𝑡 for transferring  the production 

to item 𝑘. Constraint (6) implies the upper time of the completion time; it further 

ensures that the completion time is less than the scheduling horizon. Constraints (7, 

8) determine the beginning times on unit 𝑗, taking into consideration sequence-

dependent setup times. By adjusting the parameter 𝑠𝑑𝑝,𝑘,𝑗 , the setup time can be 

changed to the successor or predecessor dependent setups. It also guarantees a 

workable timing of the products allocated to the same unit of processing.  

Constraints (9, 10) indicate that if product 𝑝 is assigned to unit 𝑗 at time 𝑡, at most, 

one product 𝑘 is handled just after or/and before it. Constraint (11) forbids the batch 

splitting for packaging operations. Constraint (12) guarantees that the overall 

number of effective sequencing variables 𝑋𝑝,𝑘,𝑗,𝑡 should be greater than the overall 

number of effective assignment binary variables, 𝑌𝑝,𝑗,𝑡   minus one. Constraint (13) 

represent the interaction between packaging units and fermentation phase. Capacity 

constraint (15) imposes a product's packaged quantity to be minimal than its 

corresponding upper packaging rate 𝑄𝐿𝑝,𝑗
𝑚𝑎𝑥  and larger than its lower packaging 

rate 𝑄𝐿𝑝,𝑗
𝑚𝑖𝑛 . Constraint (16) ensures maximum and minimum lot sizes for producing 

intermediate product. Constraints (17, 18) guarantee the inventory equilibrium. The 

relationship between the level of demand and inventory considering the life-span of 

the product is demonstrated by Constraint (19, 20). The lower bound, which imposes 

that the inventory should be larger than the safety stock at the end of work day, is 

shown by Constraint (21). 

 

3.4 Problem with fuzzy demands  
If the demand for different products is uncertain and imprecise, we propose 

modeling it using a fuzzy theoretical approach, and utilizing a fuzzy set 𝑑𝑝,𝑡̃ ,  𝑝 =
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1,… , 𝑁, to define demand. The mathematical programming method is the same as 

above, except for the inventory constraints (16, 17, 18, and 19). The following fuzzy 

constraints for the fuzzy demands for product p must be considered instead of the 

crisp inventory constraints: 

 

𝐼𝑝,𝑡 ≥ 𝐼0 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

+ 𝑑𝑝,𝑡̃        ∀𝑝, 𝑡: 𝑡 = 1                                      (21)       

 

𝐼𝑝,𝑡 ≥ 𝐼𝑝,𝑡−1 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

+ 𝑑𝑝,𝑡̃         ∀, 𝑡: 𝑡 > 1                             (22) 

𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡′̃

𝑡+𝑠𝑙

𝑡′=𝑡

             ∀𝑝, 𝑡 ≤ 𝑇 − 𝑠𝑙                                                    (23) 

𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡′̃

𝑇

𝑡′=𝑡+1

         ∀𝑝, 𝑡 > 𝑇 − 𝑠𝑙                                                    (24) 

 

4. Solution approach 
Many strategies have been used to handle uncertainties in optimization problems. 

Fuzzy Theory is among the most commonly used strategies. In particular, the model 

of fuzzy possibilistic programming is widely applied, which is a strong 

mathematical optimization technique to be utilized under uncertainty to solve 

optimization issues. Furthermore, by using this method, as compared to the 

deterministic formulation, the problem size stays unchanged, meaning that the 

computational complexity of the issue does not rise [25]. Since this strategy adds no 

constraint to the problem model; therefore, it is convenient for NP-hard issues [27].  

 

The use of fuzzy planning methods to deal with multi-objective issues by taking 

into account the problems of uncertainty is suggested [29]. In certain multi-objective 

issues, the primary aim is to accomplish the collection of objectives by decision 

makers. In our problem, the decision-maker would like to achieve goals relating to 

cost and completion time. Hence, we suppose that it is beneficial to use goal 

programming approaches. Therefore, here, a goal programming and a fuzzy 

possibilistic programming are proposed to obtain the goals’ group out under 

uncertainty in a multi-objective issue. 

 

4.1 Step one: Defining goals 
DMs define the goals of the issue in this phase. To do so, the optimum value of each 

objective function is calculated by solving the objective functions separately. Then, 
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based on the optimal values, DMs will decide the goals of each problem. These 

objectives, which are not restricted to the objective functions, can be specified for all 

restrictions. For instance, it is presumed in the suggested model that the optimal 

values of the individually solved for the first and second objective functions are 𝑍1
∗ 

and 𝑍2
∗, respectively. If the goal relating to the first objective function is 𝐺𝑜𝑎𝑙1 and 

to the second objective function is  𝐺𝑜𝑎𝑙2, the two proposals that follow are valid: 
 

𝑍1
∗ ≤ 𝐺𝑜𝑎𝑙1 , 𝑍2

∗ ≤ 𝐺𝑜𝑎𝑙2 
 

 4.2 Step 2: goal programming approach 
In the present stage, the goal programming approach is described by providing a 

group of goals for the issue. The model is as shown in Equation 25: 

𝑀𝑖𝑛 𝐷1
+ 

𝑀𝑖𝑛 𝐷2
+ 

𝑠𝑡:                                                                                                   (25) 

𝑍1 − 𝐷1
+ + 𝐷1

− = 𝐺𝑜𝑎𝑙1 

𝑍2 − 𝐷2
+ + 𝐷2

− = 𝐺𝑜𝑎𝑙2 

model 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 
 
Where, 𝐷1

+ and 𝐷2
+ are positive deviations, and 𝐷1

− and 𝐷2
− represent negative 

deviations, respectively, from the first and second goals. The model constraints 

comprise of the constraints of the suggested system. The two objective functions in 

the problem under study are minimization functions. Then the positive deviations 

from the goals should be minimized. 

 

4.3 Step 3: Fuzzy possibilistic programming 
For modeling the fuzzy demand, we suggest considering the possibility that the 

demand for all products to a certain degree is less or equal to the inventory. This 

contributes to a crisp equivalent model. The approach of handling the fuzzy 

constraints is close to the programming of chance constraints in stochastic 

optimization.  It is supposed that the fuzzy parameters can be managed with at least 

the credibility, possibility, or necessity, known as the “degree of confidence”. If the 

demand is not precisely defined, we suggest trying to find a solution that needs at 

least a certain degree of possibility α ∈ [0,1]. This degree must be decided in 

advance by the decision maker. Furthermore, the determination of a certain degree 

of necessity that the demand can be fulfilled is an even greater condition. In 

addition, we can consider the fuzzy case's credibility, which is determined as the 

average of its necessity and possibility: 
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𝑃𝑜𝑠/𝑁𝑒𝑠/𝐶𝑟 (𝐼𝑝,𝑡 ≥ 𝐼0 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− 𝑑𝑝,𝑡̃) ≥ α   ∀𝑝, 𝑡: 𝑡 = 1; α

∈ [0,1]              (26) 

𝑃𝑜𝑠/𝑁𝑒𝑠/𝐶𝑟(𝐼𝑝,𝑡 ≥ 𝐼𝑝,𝑡−1 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− 𝑑𝑝,𝑡̃) ≥ α   ∀𝑝, 𝑡: 𝑡 > 1; α

∈ [0,1]              (27) 

𝑃𝑜𝑠/𝑁𝑒𝑠/𝐶𝑟 (𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡 ′̃

𝑡+𝑠𝑙

𝑡′=𝑡

) ≥ α              ∀𝑝, 𝑡 ≤ 𝑇 − 𝑠𝑙 ; α

∈ [0,1]      (28) 

𝑃𝑜𝑠/𝑁𝑒𝑠/𝐶𝑟 (𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡 ′̃

𝑇

𝑡′=𝑡+1

) ≥ α          ∀𝑝, 𝑡 > 𝑇 − 𝑠𝑙 ; α

∈ [0,1]       (29) 
 
In order to calculate, let us initially assume that the necessity and possibility and 

credibility of a triangular fuzzy number may be greater or equal to zero as follows:  

𝑝𝑜𝑠(𝜉 ≥ 0) = 𝑝𝑜𝑠ξ̃({𝑥|𝑥 ≥ 0})

= 𝑠𝑢𝑝𝜇ξ̃({𝑥|𝑥 ≥ 0})                                                          (30) 

𝑝𝑜𝑠(𝜉 ≤ 0) = 𝑝𝑜𝑠ξ̃({𝑥|𝑥 ≤ 0})

= 𝑠𝑢𝑝𝜇ξ̃({𝑥|𝑥 ≤ 0})                                                           (31) 

 

𝑁𝑒𝑐(𝜉 ≥ 0) = 𝑁𝑒𝑠ξ̃({𝑥|𝑥 ≥ 0}) = 1 − 𝑠𝑢𝑝𝜇ξ̃({𝑥|𝑥 < 0})                    (32) 

𝑁𝑒𝑐(𝜉 ≤ 0) = 𝑁𝑒𝑠ξ̃({𝑥|𝑥 ≤ 0}) = 1 − 𝑠𝑢𝑝𝜇ξ̃({𝑥|𝑥 > 0})                    (33) 

 

𝑐𝑟(ξ̃ ≥ 0) =
1

2
[𝑝𝑜𝑠(ξ̃ ≥ 0) + 𝑁𝑒𝑐(ξ̃ ≥ 0)]                                                  (34)  

𝑐𝑟(ξ̃ ≤ 0) =
1

2
[𝑝𝑜𝑠(ξ̃ ≤ 0) + 𝑁𝑒𝑐(ξ̃ ≤ 0)]                                             (35)  

 
The possibility (Pos), necessity (Nec), and credibility (Cr) can be calculated using 

the following formulas for a triangular fuzzy number ξ̃ = (ξ, ξ̂ , ξ) with ξ̂ ≠ ξ and ξ̂ ≠

ξ: 
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𝑝𝑜𝑠(ξ̃ ≥ 0) =

{
 
 

 
 
1                    ξ̂ ≥ 0,   
ξ

ξ − ξ̂
             ξ̂ ≤ 0 ≤ ξ

0                       ξ̂ ≤ 0

                                                    (36) 

𝑝𝑜𝑠(ξ̃ ≤ 0) =

{
 
 

 
 
0                    ξ̂ ≤ 0,   
−ξ

ξ − ξ̂
             ξ̂ ≤ 0 ≤ ξ

1                       ξ̂ ≥ 0

                                                      (37) 

 
 

Fig. 1. 𝑝𝑜𝑠(ξ̃ ≤ 0) for a triangular fuzzy number ξ̃ 

 

𝑁𝑒𝑐(ξ̃ ≥ 0) =

{
 
 

 
 1                    ξ ≥ 0,   

ξ̂

ξ̂ − ξ
             ξ < 0 ≤ ξ̂

0                       ξ̂ < 0

                                                   (38) 
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𝑁𝑒𝑐(ξ̃ ≥ 0) =

{
 
 

 
 0                    ξ ≤ 0,   

−ξ̂

ξ̂ − ξ
             ξ ≤ 0 ≤ ξ̂

1                       ξ̂ ≥ 0

                                                     (39) 

 

 
Fig. 2. 𝑁𝑒𝑐(ξ̃ ≤ 0) for a triangular fuzzy number ξ̃ 

 
 Credibility (Cr) of fuzzy events: 

𝑐𝑟(ξ̃ ≤ 0)

=  

{
 
 
 

 
 
 ξ

ξ − ξ̂
                 ξ̂ ≤ 0 ≤ ξ̂                                

0                        ξ̂ = 0                               
−ξ

ξ − ξ̂
                 ξ̂ ≤ 0 ≤ ξ                       

1                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

                                     (40) 
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𝑐𝑟(ξ̃ ≥ 0)

=  

{
 
 
 

 
 
 −ξ

ξ − ξ̂
                 ξ̂ ≤ 0 ≤ ξ̂                                

1                        ξ̂ = 0                               
ξ

ξ − ξ̂
                 ξ̂ ≤ 0 ≤ ξ                       

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

                                      (41) 

 

 

 

𝑝𝑜𝑠{ξ ≤ 0} ≥ 𝛼 → 0 ≥ (1 − 𝛼)ξ̂  + 𝛼ξ                                                  (42) 

𝑝𝑜𝑠{ξ ≥ 0} ≥ 𝛼 → 0 ≤ 𝛼ξ̂ + (1 − 𝛼)ξ                                                   (43) 

 

 

𝑁𝑒𝑠{ξ ≤ 0} ≥ 𝛼 → 0 ≥ (1 − 𝛼)ξ + 𝛼 ξ̂                                                  (44) 

𝑁𝑒𝑠{ξ ≥ 0} ≥ 𝛼 → 0 ≤ 𝛼ξ + (1 − 𝛼)ξ̂                                                   (45) 
 

𝐶𝑟{ξ ≤ 0} ≥ 𝛼 → 0 ≥ (2 − 2𝛼)ξ̂ + (2𝛼 − 1)ξ                                     (46) 

𝐶𝑟{ξ ≥ 0} ≥ 𝛼 → 0 ≤ (2𝛼 − 1)ξ + (2 − 2𝛼)ξ̂                                     (47) 

 
Therefore, the condition for the probability that the inventory is appropriate in the 

latter model can be calculated as follows: 

𝑃𝑜𝑠/𝑁𝑒𝑠/𝐶𝑟(𝐼𝑝,𝑡 ≥ 𝐼0 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− 𝑑𝑝,𝑡̃) ≥ α   

⟺  𝑝𝑜𝑠 (𝐼𝑝,𝑡 − 𝐼0 −∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

+ 𝑑𝑝,𝑡̃ ≥ 0) ≥ α   ∀𝑝, 𝑡: 𝑡

= 1; α ∈ [0,1]       (48)   
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𝑃𝑜𝑠/𝑁𝑒𝑠/𝐶𝑟(𝐼𝑝,𝑡 ≥ 𝐼p,t +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− 𝑑𝑝,𝑡̃) ≥ α    

⟺  𝑝𝑜𝑠 (𝐼𝑝,𝑡 − 𝐼p,t −∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

+ 𝑑𝑝,𝑡̃ ≥ 0)

≥ α   ∀𝑝, 𝑡: 𝑡 > 1; α ∈ [0,1]      (49)  

𝑃𝑜𝑠/𝑁𝑒𝑠/𝐶𝑟 (𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡 ′̃

𝑡+𝑠𝑙

𝑡′=𝑡

) ≥ α ⟺  𝑝𝑜𝑠 (𝐼𝑝,𝑡 −∑ 𝑑𝑝,𝑡 ′̃

𝑡+𝑠𝑙

𝑡′=𝑡

≤ 0)

≥ α             ∀𝑝, 𝑡 ≤ 𝑇 − 𝑠𝑙 ; α ∈ [0,1]      (50) 

𝑃𝑜𝑠/𝑁𝑒𝑠/𝐶𝑟 (𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡 ′̃

𝑇

𝑡′=𝑡+1

) ≥ α 

⟺  𝑝𝑜𝑠 (𝐼𝑝,𝑡 − ∑ 𝑑𝑝,𝑡 ′̃

𝑇

𝑡′=𝑡+1

≤ 0)         ∀𝑝, 𝑡 > 𝑇 − 𝑠𝑙 ; α

∈ [0,1]       (51) 
 

4.4 Step 4: Deterministic equivalent crisp model 

If all demands 𝑑𝑝,𝑡̃ = (𝑑𝑝,𝑡 , 𝑑𝑝,𝑡̂ , 𝑑𝑝,𝑡), 𝑝 = 1,… , 𝑃 are triangular fuzzy numbers, 

then the following constraints can be modeled as crisp alternatives for the fuzzy 

constraint for 𝛼 > 0: 

 

𝑃𝑜𝑠(𝑠𝑒𝑟𝑣𝑒𝑑𝑝,𝑡̃) ≤ 𝛼 ⇔ 𝐼𝑝,𝑡

≥ 𝐼0 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− ((1 − 𝛼)𝑑𝑝,𝑡̂ + 𝛼𝑑𝑝,𝑡)             (52) 

𝐼𝑝,𝑡 ≥ 𝐼p,t−1 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− ((1 − 𝛼)𝑑𝑝,𝑡̂ + 𝛼𝑑𝑝,𝑡)                            (48)      

𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡

𝑡+𝑠𝑙

𝑡′=𝑡

+ 𝛼(∑ 𝑑𝑝,𝑡̂

𝑡+𝑠𝑙

𝑡′=𝑡

−∑ 𝑑𝑝,𝑡

𝑡+𝑠𝑙

𝑡′=𝑡

)                                             (53) 

𝐼𝑝,𝑡 ≤ ∑ 𝑑𝑝,𝑡

𝑇

𝑡′=𝑡+1

+ 𝛼 ( ∑ 𝑑𝑝,𝑡̂

𝑇

𝑡′=𝑡+1

− ∑ 𝑑𝑝,𝑡

𝑇

𝑡′=𝑡+1

)                       (54) 
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𝑁𝑒𝑠(𝑠𝑒𝑟𝑣𝑒 𝑑𝑝,𝑡̃) ≤ 𝛼 ⇔ 𝐼𝑝,𝑡

≥ 𝐼0 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− (𝛼𝑑𝑝,𝑡̂ + (1 − 𝛼)𝑑𝑝,𝑡)          (56) 

 

𝐼𝑝,𝑡 ≥ 𝐼p,t−1 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− (𝛼𝑑𝑝,𝑡̂ + (1 − 𝛼)𝑑𝑝,𝑡)                         (57) 

 

𝐼𝑝,𝑡 ≤ (1 − 𝛼)∑ 𝑑𝑝,𝑡̂

𝑡+𝑠𝑙

𝑡′=𝑡

+ 𝛼∑ 𝑑𝑝,𝑡

𝑡+𝑠𝑙

𝑡′=𝑡

)                                                      (58) 

𝐼𝑝,𝑡 ≤ (1 − 𝛼) ∑ 𝑑𝑝,𝑡̂

𝑇

𝑡′=𝑡+1

+ 𝛼 ∑ 𝑑𝑝,𝑡

𝑇

𝑡′=𝑡+1

)                                          (60) 

 

 

 

𝐶𝑟(𝑠𝑒𝑟𝑣𝑒𝑑𝑝,𝑡̃) ≤ 𝛼 ⇔ 𝐼𝑝,𝑡

≥ 𝐼0 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− ((2 − 2𝛼)𝑑𝑝,𝑡̂ + (2𝛼 − 1)𝑑𝑝,𝑡)                            (61) 

𝐼𝑝,𝑡 ≥ 𝐼p,t−1 +∑∑𝑄𝑙,𝑗,𝑡
𝑗𝑙

− ((2 − 2𝛼)𝑑𝑝,𝑡̂ + (2𝛼 − 1)𝑑𝑝,𝑡)                             (62)     

𝐼𝑝,𝑡 ≤ (2𝛼 − 1)∑ 𝑑𝑝,𝑡

𝑡+𝑠𝑙

𝑡′=𝑡

+ (2 − 2𝛼)∑ 𝑑𝑝,𝑡  ̂    

𝑡+𝑠𝑙

𝑡′=𝑡

                                (63) 

𝐼𝑝,𝑡 ≤ (2𝛼 − 1) ∑ 𝑑𝑝,𝑡

𝑇

𝑡′=𝑡+1

+ (2 − 2𝛼) ∑ 𝑑𝑝,𝑡̂   

𝑇

𝑡′=𝑡+1

                          (64) 

4.5 Step 5: Equivalent single objective model 
There are many approaches in the literature to solve multi-objective linear 

programming problems (MOLP); however, a fuzzy programming method has been 
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utilized to achieve a maximum degree of satisfaction with all objective functions by 

a wide variety of investigators. The primary benefit of this technique is that it 

enables the decision maker to find the optimum results based on his/her preferences 

or the proportional significance of each target. Zimmermann [29] was the first 

researcher to suggest a fuzzy method to solve the MOLP with a max-min approach.  

Then Lai and Hwang [30] suggested an improved min-max method to overcome 

the weakness of the approach through providing more unique and reliable solutions.  

Since the objective of programming is to minimize the unacceptable deviations 

from the objectives defined by the decision makers, to this end, the following 

membership function is applied: 

𝜇𝐷𝑖
𝑀𝑖𝑛(𝑥) =

{
 
 

 
 

  

1                      𝐷𝑖(𝑥) > 𝑈𝐷𝑖
0                      𝐷𝑖(𝑥) < 𝐿𝐷𝑖                                       (65)          

 
𝑈𝐷𝑖 − 𝐷𝑖(𝑥)

𝑈𝐷𝑖 − 𝐿𝐷𝑖
                       𝐿𝐷𝑖 ≤ 𝐷𝑖(𝑥) ≤  𝑈𝐷𝑖    

 

 

 
Where, 𝑈𝐷𝑖 and  𝐿𝐷𝑖 are the upper and lower levels of unwanted deviations 

from the goal i, respectively. 

The membership function of unwanted deviations from goal i is indicated 

by 𝜇𝐷𝑖
𝑀𝑖𝑛. As a result, the following fuzzy single objective formation is acquired: 

 

𝑀𝑎𝑥 𝜑 

𝑆𝑡: 

𝜑 ≤ 𝜇𝑑𝑖
𝑀𝑖𝑛(𝑥)                             (66) 

𝑍𝑖 − 𝐷𝑖
+ + 𝐷𝑖

− = 𝐺𝑜𝑎𝑙𝑖 
 

𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 
 
Based on the above constraint, the suggested mathematical method can be 

developed as below: 

𝑀𝑎𝑥 𝜑 

𝑆𝑡: 

𝜑 ≤
𝑈𝐷1 −𝐷1(𝑥)

𝑈𝐷1 − 𝐿𝐷1
 

 

𝜑 ≤
𝑈𝐷2−𝐷2(𝑥)

𝑈𝐷2−𝐿𝐷2
                 (67) 
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𝑍1 − 𝐷1
+ + 𝐷1

− = 𝐺𝑜𝑎𝑙1 
 

𝑍2 − 𝐷2
+ + 𝐷2

− = 𝐺𝑜𝑎𝑙2 
 

𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 
Accordingly, we developed a fuzzy goal programming approach with a 

possibilistic constraint to solve the proposed model, which allows DMs for making 

better deciding and sensitive analyses. The proposed methodology to solve the 

problem is shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Proposed methodology to solve the problem 

Determining the problem's goals relying on optimum 

value by solving separately for each objective function 

Defining the goal programming model after setting the 

problem goals 

Implementing and solving the suggested model in GAMS 

program with CPLEX solver  

Deriving the equivalent single-objective method 

Handling the fuzzy constraints using fuzzy 

possibilistic programming  

Determining the deterministic equivalents of constraints 
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5. Case study  

To illustrate the numerical validation and applicability of the suggested model, 

the production planning and scheduling problems faced by a small local yoghurt 

factory are presented. Therefore, as an explanatory example, the set form of yoghurt 

production process is handled. The manufacturing line of yogurt is comprised of a 

collection of cooling tanks (set yogurt) and straight forms of three parallel filling 

and packing systems. 

The scheduling is carried out across an hourly time period in the case study (i.e., 

18h). For yoghurt production, the short-term scheduling time period is typically 1 

week. The standards for seven product categories are fulfilled within normal 

operating hours. There is a minimum lot size of 1,200 l for the processing phase, and 

the sequence-dependent setup times range from 0.5 to 1.5 h for transformation 

between the product categories. In a packing unit, the minimum production quantity 

of any product type is 150 kg. The capability of the tank restricts the overall output 

quantity of the product category in each unit of packaging. The packaging speed of 

each packaging line and other machines’ data are shown in Table 1. In addition, the 

initial inventory and holding costs are given in Table 2. 

 

Table 1 : Machine data 

 

 Unit 1 Unit 2 Unit 3 

Set-up time (minutes) 137 195 80 

Set-up cost  ($) 20 28 12 

Packing rate 

(litres/hours). 

4615 2640 2013 

Table 2: Products data 

 

Product Initial inventory Inventory cost ($) 

P1 4,000 0.025 

P2 2,000 0.075 

P3 750 0.125 

P4 500 0. 25 

P5 1,700 0.025 

P6 1,250 0.075 

P7 1,600 0.125 

 

To discover the pattern of demand for yogurt products in the case under study, 

the data regarding the monthly sales of yogurt products Dairy Business were 

collected over 60 months from 2016 to 2019. The pattern of demand over this period 
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is illustrated in Figure 4. As shown, there is no specific pattern of demand for dairy 

products. 

 

 
 

Fig. 4 Total demand for dairy products  

 
Since adequate data are not always available to forecast uncertain parameters, 

the choice of a fuzzy set theory is more rational and compelling to convey the 

complexity of expert expertise. Most of the significance in the theory of the fuzzy 

system lies in the portrayal of complexity in the human cognitive process [26].  

The demand, as a fuzzy parameter, is represented in this paper as a triangular 

membership function. We consider  (ξ, ξ̂ , ξ)  where, ξ is the most pessimistic, ξ̂ is the 

most likely and ξ is the most optimistic value for characterizing the fuzzy number of 

triangle ξ̃. These values must be estimated for each fuzzy parameter using the 

approach suggested by Lai and Hwang [28]. First, according to the uniform 

distribution, the most possible value for each uncertain parameter is assigned 

randomly. Then the most pessimistic ξ and the most optimistic ξ values of a fuzzy 

number ξ are obtained as ξ = (1 − 𝑟1)ξ̂,ξ = (1 + 𝑟1)ξ̂, respectively, where (𝑟1, 𝑟2) 

are two numbers randomly generated according to the uniform distribution (0.1, 

0.3). 

 

6. Experimental results  
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This part is devoted to discussing the research outcomes. The suggested 

mathematical model is implemented in GAMS software and solved with CPLEX 

solver by introducing the case data and running it on a 2.2 GHz personal computer 

core i7 with 8.0 GB RAM. The resulting integrated model has 1,842 continuous and 

1,356 binary variables, and 1,934 constraints. According to DMs, the possibility of 

meeting demand constraints at the degree of α=0.7, the first and second goals were 

deemed 14(hours) in each day for reason related with consuming energy, 5000($) in 

horizon period, respectively. 

The crisp equivalent fuzzy goal model for a requested possibility α = 0.7 to meet 

the demand was solved, and the obtained results as well as the model statistics are 

displayed in Table 3. Compared to the deterministic model, the size of the problem 

stays constant, which demonstrates the excellent computational efficiency of the 

possibilistic programming. The probability measure indicates an optimistic attitude 

of the decision maker in relation to what we explained in the possibilistic 

programming, while the necessity measure represents a pessimistic attitude. In the 

model of possibility, demand for the product has a tendency in a broader range, 

while the demand tends to have a limited range in the necessity model. The 

outcome demonstrates that beneath 0.7 possibility, the total cost is 7255.912 and 

maximum completion time is 14.760, whereas beneath 0.7 certainty level, the total 

cost and the maximum completion time are 4769.915 and 14.232, respectively. 

The measure of credibility is the average of necessity and possibility; however, it 

appears to be more pessimistic. The outcome shows that beneath 0.7 credibility 

degree, the total cost is 5719.925 and the maximum completion period is 14.636, 

which is a trade-off between the two models, but close to the necessity result. Tables 

4 and 5 introduce the production schedule and the inventory of products, 

respectively. A total cost breakdown is shown in Figure 5. 

 

Table 3: Model statistics. 

 

Model Total cost 

Maximum 

completion 

time 

Time 

(s) 

Number 

of binary 

variables 

Number of 

continuous 

variables 

Number of 

constraints 

Pos-

model 
7255.912 14.760 15.13 1,356 1,842 1,934 

Nes-

model 
4769.915 14.232 55.38 1,356 1,842 1,934 

Cr-

model 
5719.925 14.636 39.94 1,356 1,842 1,934 
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Table 4: Production Schedule 

 

Product Package 

unit 

Production periods (days) 

n0 n1 n2 n3 n4 n5 

p1 j2 0 9163.505 0 0 0 0 

p2 j2 0 0 3660.271 0 0 0 

p3 j1 0 0 5380.894 5400 0 0 

p3 j3 5109.41 5760 0 0 5760 5760 

p4 j2 0 0 0 9961.461 10260 9326.638 

p5 j2 6890.59 0 8602.727 7354.377 7055.838 7989.2 

p6 j3 0 0 5760 3586.364 3187.295 0 

p7 j3 0 0 5760 3328.416 0 0 

 

 

Table 5:  Inventory of product 
  

Product Production periods (days) 

n0 n1 n2 n3 n4 

p1 0 7343.015 0 0 0 

p2 0 0 3353.984 0 0 

p3 5109.41 211.5289 0 1098.959 0 

p4 0 0 0 5060.161 4114.008 

p5 6890.59 0 0 0 4127.831 

p6 0 0 4038.942 1626.078 1470.515 

p7 0 0 3421.027 1113.249 0 
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Fig. 5. Cost comparative analysis 

 
7. Analyzing sensitivity 

We carried out a sensitivity analyses with respect to α value in order to support 

our argument on the benefits of the suggested approach to provide flexibility in 

decision making. Six different α values (0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) were used to 

represent six different decision-condition scenarios. As shown in Tables (6, 7, 8), the 

change in 𝛼 value influences the maximum division from goal (𝜑), output results 

and objective values. The relationship between 𝛼 value and (𝜑) is positively 

correlated to possibility and necessity measures. That is, the 𝜑 value rises from 

0.499 to 0.541 when 𝛼 value increases from 0.7 to 1.0 when applying the possibility 

measure. Also the 𝜑 value increases from 0.545 to 0.586, when 𝛼 value increases 

from 0.1 to 1.0 when applying the necessity measure.  

The relationship between 𝛼 value and (𝜑) is negatively correlated to credibility 

measure. That is, the 𝜑 value decreases from 0.558 to 0.455 when 𝛼 value rises from 

0.1 to 1.0.   

For measuring the chances of occurrence of fuzzy activities, necessity, 

possibility and credibility measures were used. These measures with pessimistic and 

optimistic modes and a combination of these two modes, respectively. Thus, the 

three values of pessimistic, optimistic and a combination of these two modes were 

determined by solving the fuzzy goal programming according to the credibility, 

necessity and possibility approaches. The above-mentioned triple efficiency values 

can lead to better decision-making and sensitivity analyzing by DMs. 

Based on the results of fuzzy goal programming models, maximum 𝜑 was 

obtained for lower value of 𝛼  by the credibility approach. 
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As shown in Table (6), for some α values, the proposed model does not have a 

viable solution; this phenomenon occurs after α-cuts. The values obtained for 

variable coefficients and parameters of various limitations, an infeasible area is 

supplied. Therefore, there is no solution for the objective function.  This is one 

disadvantages of the fuzzy possibility programming that there is no viable 

alternative for certain values of α. 

 
Table 6: Summary of the results related to various 𝛼 values using the possibility 

measure 
 

 Alpha 𝜑 Total cost Maximum 

completion time 

Nodes CPU time 

1 0.1 No feasible solution 

2 0.3 No feasible solution 

3 0.5 No feasible solution 

4 0.7 0.499 7255.912 14.760 3210 15.13 

5 0.9 0.533 6333.457 14.437 5974 50.83 

6 1 0.541 4689.375 14.362 11268 82.43 

 

Table 7: Summary of the results corresponding to different 𝛼 values using the 

necessity measure 
 

 Alpha 𝜑 Total cost 

Maximum 

completion 

time 

Nodes CPU time 

1 0.1 0.545 6667.677 14.318 6767 61.88 

2 0.3 0.549 4239.818 14.285 8550 64.48 

3 0.5 0.555 4158.391 14.232 6348 53.78 

4 0.7 0.555 4769.915 14.232 7839 55.38 

5 0.9 0.581 5558.892 13.982 5391 39.19 

6 1 0.586 3856.845 13.930 2773 20.64 

 
Table 8 Summary of the results corresponding to different 𝛼 values using the 

credibility measure 
 

 Alpha 𝜑 Total cost 
Maximum 

completion time 
Nodes 

CPU 

time 

1 0.1 0.558 5595.900 14.200 2985 19.38 

2 0.3 0.554 5615.002 14.237 7261 68.13 

3 0.5 0.541 5648.377 14.364 4871 57.67 

4 0.7 0.512 5719.925 14.636 6442 39.94 

5 0.9 0.474 5813.919 14.993 4316 26.39 

6 1 0.455 5862.870 15.179 6676 30.27 
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8. Conclusion 
In this study, we present a bi-objective MILP formulation for simultaneous 

scheduling and lot-sizing of perishable products under uncertainty. The optimization 

method incorporates decision making across production schedules, including the 

quantity of product that can be produced in each duration over the scheduling 

horizon and the levels of inventory at the end of the day. The objectives of the 

suggested model are to minimize the overall costs and completion time and to solve 

the bi-objective model under uncertain demand using a possibilistic fuzzy goal 

programming method. 

The uncertain demand was addressed as fuzzy numbers and we used fuzzy goal 

programming for solving lot-sizing and scheduling model. The results such as 

production schedule, inventory level, maximum completion time, and total cost of 

product at a confidence level of possibility, necessity, and credibility were reported. 
Accordingly, increasing 𝛼-values when applying the possibility and necessity 

measure causes increase in the φ value rises, but when applying credibility measure, 

the φ value decreases, when 𝛼-values increases, because of the minimization of the 

objective functions.  In our model, necessity and possibility were implemented and 

evaluated, reflecting the decision makers' pessimistic and optimistic attitudes, as 

well as the credibility that is the trade-off between necessity and possibility. Better 

decision-making and sensitivity analysis for DMs can be made based on the three 

obtained efficiency values. As future work, we will apply robust possibilistic 

programming (RPP) to overcome the weaknesses of the suggested method and 

obtain feasible solutions for all 𝛼-values. 

Another future study may be directed at solving hybrid uncertainties such as 

facing fuzziness and roughness at the same time. 
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