برنامه ریزی ظرفیت برای تولید و بازتولید در یک زنجیره تامین حلقه بسته با توجه به رفتار مشتری با استفاده از رویکرد پویایی سیستم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیارگروه مهندسی صنایع، دانشکدۀ فنی و مهندسی، دانشگاه پیام نور

2 دانشجوی کارشناسی ارشد مهندسی صنایع، دانشگاه صنعتی سجاد

چکیده

در سال های اخیر استفاده و پیاده سازی زنجیره تامین حلقه بسته از آن جهت مورد اهمیت قرار گرفته است که مسبب بهبود در سودآوری شرکتها، مسائل زیست محیطی و توسعه پایدار و .. میشود. همین امر موجب گستردگی تحقیقات و افزایش مقالات در این زمینه گشته است. لذا بررسی عوامل تاثیرگذار و میزان تاثیرگذاری آنها شناخت بهتری برای طراحی یک زنجیره تامین حلقه بسته میشود. توجه عمده در این مقاله بر روی برنامه ریزی ظرفیت تولید با در نظر گرفتن رفتار مشتری و خدمات بر روی میزان بازگشتی ها در زنجیره تامین است. هدف این مقاله روشن نمودن متغیرهای موثر و چگونگی رویکرد انها نسبت به یکدیگر در جهت تحقق اهداف زنجیره می باشد. از این رو ابتدا مروری بر روی ادبیات موضوع داشته و متغیرهای کلیدی برخی از مقالات مشخص شده است. در قدم بعدی با رسم نمودارهای علی و معلولی ارتباطات متغیرها با یکدیگر بررسی وسپس توسط نمودار جریان، متغیرهای حالت و محل های انباشت در زنجیره مشخص گردید. درنهایت با استفاده از آزمونهای مدلسازی پویا مانند تحلیل حساسیت، آزمون شرایط حدی و ...، مدل راستی آزمایی و اعتبارسنجی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Capacity Planning For Production and Reproduction In A Closed Loop Supply Chain According to Customer Behavior Using A System Dynamics Approach

نویسندگان [English]

  • mojtaba salehi 1
  • fereshteye atefi 2
  • shabnam ahmadiyan 2
1 Assistant professor in Department of Industrial Engineering, Payame Noor University, Tehran, Iran
2 MSc. Student of Industrial Engineering, Sadjad University of Technology
چکیده [English]

In recent years, the use and implementation of the closed loop supply chain has been important because of the improvement in corporate profitability, environmental issues and sustainable development. This has led to a wider range of research and articles in this area. Therefore, studying the effective factors and their impact level is a better understanding of the design of a closed loop supply chain. The main focuses of this paper is on the planning of production capacity, taking into account customer behavior and service on the level of returns in the supply chain. The purpose of this paper is to clarify the effective variables and how they approach each other in order to achieve the goals of the chain. So, first, there is an overview of the subject literature and the key variables of some of the papers have been identified. In the next step, by drawing the causal and nonlinear diagrams, the relationships of the variables were examined together and then determined by the flow diagram, state variables, and accumulation locations in the chain. Finally, the model has been validated and validated using dynamic modeling tests such as sensitivity analysis, boundary condition testing, etc.

کلیدواژه‌ها [English]

  • closed loop supply chain
  • causal diagram
  • flow diagram
  • Sensitivity analysis
  • System Dynamic
[1] Razmi, Jafar and Pishvaei, Mirsaman, Quantitative Methods for Reverse Logistics Management, First Edition, Tehran, Institute of Martial Studies and Research, Jafar and Pishvaei, Mirsaman, Quantitative Methods for Reverse Logistics Management, First Edition, Tehran, Institute of Business Studies and Research, 1389.
[2] Inderfurth, K., van der Laan, E., 2001. Leadtime effects and policy improvement for stochastic inventory control with remanufacturing. International Journal of Production Economics 71 (1-3), 381.
[3] Kiesmuller, G.P., Minner, S., 2003. Simple expression for finding recovery system inventory control parameter values. Journal of the Operational Research Society 54 (1), 83–88.
[4] Kiesmuller, G.P., van der Laan, E.A., 2001. An inventory model with dependent product demands and returns. International Journal of Production Economics 72 (1), 73.
[5] Koh, S.-G., Hwang, H., Sohn, K.-I., Ko, C.-S., 2002. An optimal ordering and recovery policy for reusable items. Computers and Industrial Engineering 43 (1–2), 59.
[6] Belhajali I. and Hachicha, W. 2013. System dynamics simulation to determine safety stock for a single-stage inventory system," in Advanced Logistics and Transport (ICALT), 2013 International Conference on, pp. 488-493.
[7] Ahmadi Azar, Dori, Alam Tabriz, & Kasaei. Modeling and problem solving of stable closed loop supply chain network design for petrochemical products under uncertainty conditions. Journal of Modern researches in Decision Making, 4 (4), 1-30.
[8] Taghavi Fard, Seyed Mohammad Taghi, Dehghani, & Aghaei. (2015). Development of a Model for Determining the Optimal Order Quantity by Selecting the Appropriate Supplier and Solving Using the NSGA-II Genetic Algorithm Method, Case Study: Bushehr Cotton Pearl Company. Management Research in Iran, 19 (2), 65-89.
 [9] Chen, W., J. Li, and X. Jin, 2016. The replenishment policy of agri-products with stochastic demand in integrated agricultural supply chains," Expert Systems with Applications, vol. 48, pp. 55-66.
[10] Van der Laan, E.A., Teunter, R.H., 2006. Simple heuristics for push and pull remanufacturing policies. European Journal of Operational Research 175 (2), 1084.
[11] Tavakoli Moghaddam, Omidi Rakavandi, & Ghodrat Nema. (2014). Mathematical modeling for integrated direct and reverse logistics network design. Management Research in Iran, 17 (4), 43-63.
[12] Azar, Adel, & Jandaghi. (2016). Design of a closed loop supply chain model with a new robust fuzzy planning approach. Journal of Modern researches in Decision Making, 1 (3), 131-160.
[13] Georgiadis, P., Vlachos, D., Tagaras, G., 2006. The impact of product lifecycle on capacity planning of closed-loop supply chains with remanufacturing. Production and Operations Management 15 (4), 514–527.
[14] Kleber, R., 2006. Dynamic Inventory Management in Reverse Logistics. Springer, Berlin Heidelberg.
[15] Vlachos, D., Georgiadis, P., and Iakovou, E., 2007. A system dynamics model for dynamic capacity planning of remanufacturing in closed-loop supply chains, Computers & Operations Research, vol. 34, pp. 367-394.
[16] Suryani, E., S.-Y. Chou, R. Hartono, and C.-H. Chen, "Demand scenario analysis and planned capacity expansion: A system dynamics framework," Simulation Modelling Practice and Theory, vol. 18, pp. 732-751, 2010.
[17] Minegishi S., D. Thiel, 2000. System dynamics modeling and simulation of a particular food supply chain," Simulation Practice and Theory, vol. 8, pp. 321-339.
[18] Helo, P., 2000. Dynamic modelling of surge effect and capacity limitation in supply chains," International Journal of Production Research, vol. 38, pp. 4521-4533.
[19] Sarimveis, H., P. Patrinos, C. D. Tarantilis, and C. T. Kiranoudis, 2008. Dynamic modeling and control of supply chain systems: A review," Computers & Operations Research, vol. 35, pp. 3530-3561.
[20] Deif A. M., H. A. ElMaraghy, 2007. Assessing capacity scalability policies in RMS using system dynamics," International journal of flexible manufacturing systems, vol. 19, pp. 128-150.
 [21] Poles R. and Cheong, F., 2009. Inventory control in closed loop supply chain using system dynamics," in Int. Syst. Dyn. Conf., Albuquerque, NM, USA, 2009.
[22] Poles, R., 2013. System Dynamics modelling of a production and inventory system for remanufacturing to evaluate system improvement strategies," International Journal of Production Economics, vol. 144, pp. 189-199, 2013.
[23] Masoumeh Razi, Hamidreza Shabandarzadeh, A Brief Review of the Literature of Closed-loop Supply Chains, National Conference on New Research in Management, Law, Economics and Humanities, 2017.
[24] Alireza Ghasemi, Javad Asl Najafi, Saeed Yaghoubi, The problem of supplier selection of parts in the two-way dynamic closed loop supply chain using the amplified limit method, 2017.
[25] Sadollah Ebrahimnejad, Arezoo Roshani, Development of a Mathematical Model for Production Planning of Assembled Products in a Closed Ring Supply Chain Considering Demand and Fuzzy Return, International Green Supply Chain Conference, 2017.