ارائه مدل بهینه سازی ریاضی و الگوریتم های فراابتکاری به منظور حل مساله بلوک بندی مناطق جمعیتی به صورت سلسله مراتبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی صنایع، دانشگاه یزد، یزد، ایران

2 استاد، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه یزد، یزد، ایران

3 استادیار، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه صنعتی بیرجند، بیرجند، ایران

4 دانشیار، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه یزد، یزد، ایران

چکیده

جمع آوری پسماند بیمارستانی یکی از موضوعات مهم در مدیریت خدمات شهری محسوب می‌شود. در این تحقیق یک مدل ریاضی به منظور بلوک‌بندی مناطق جمعیتی در سیستم خدمات بیمارستانی ارائه می‌شود. ‌در این مدل مطابق با نیاز برخی از سازمان‌های متولی ارائه خدمات شهری، ساختار سلسله مراتبی بلوک‌ها مدنظر قرار گرفته است. بدین منظور در یک تصمیم-گیری یکپارچه، مناطق جمعیتی به بلوک‌های اصلی تقسیم شده و سپس هر بلوک به تعدادی زیربلوک تقسیم شده است. هدف از این نوع تقسیم بندی تهیه ساختار مناسب برای کنترل جریان خدمات از سطح عملیاتی به سطح مدیریتی است. با توجه به اینکه مساله بلوک‌بندی از رده مسائل ان پی سخت است، جهت حل مثال‌های عددی در دنیای واقعی نیاز به استفاده از الگوریتم‌های فراابتکاری است. در این تحقیق دو الگوریتم فراابتکاری ژنتیک و گرگ خاکستری جهت حل مسائل در ابعاد بزرگ به کار رفته است. طبق نتایج محاسباتی می‌توان مشاهده نمود که علیرغم وجود کارایی بالای هر دو الگوریتم در حل نمونه‌های عددی در ابعاد کوچک، الگوریتم‌ گرگ خاکستری توانایی بیشتری در حل نمونه‌های عددی در ابعاد بزرگ نسبت به الگوریتم ژنتیک دارد. نتایج این تحقیق می‌تواند به عنوان یک ابزار مدیریتی در حل مساله بهینه-سازی بلوک‌بندی مناطق جمعیتی از جمله در سیستم سلامت مورد استفاده مدیران قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

A mathematical model and meta-heuristic algorithms to solve demographic areas partitioning problem in a hierarchical structure

نویسندگان [English]

  • Foroogh Ghollasi-mood 1
  • hasan hoseini-nasab 2
  • javad tayyebi 3
  • mohammad Bagher fakhrzad 4
1 PhD Student, Faculty of Industrial Engineering, Yazd University, Yazd, Iran
2 Professor, Department of Industrial Engineering, Faculty of Industrial Engineering, Yazd University, Yazd, Iran
3 Assistant Professor, Department of Industrial Engineering, Faculty of Industrial Engineering, Birjand University of Technology, Birjand, Iran
4 Associate Professor, Department of Industrial Engineering, Faculty of Industrial Engineering, Yazd University, Yazd, Iran
چکیده [English]

Hospital waste collection is one of the most important issues in urban service management. In this research, a mathematical model is developed to partition demographic areas in the hospital services system. In this model, regarding the needs of some service providers, the hierarchical structure of the partitions is considered. For this purpose, in a unified decision-making process, populations are divided into main partitions, and then, each one is divided into a number of sub-partitions. The purpose of this type of segmentation is to provide an ordered structure to control the service flow from the operational level to managerial level. Since partitioning is an NP-hard problem, it is necessary to use meta-heuristic algorithms to solve numerical examples in the real world. Here, genetic and gray wolf algorithms have been developed to solve large-scale problems. Despite the high efficiency of both algorithms, the computational results showed that the gray wolf algorithm is more capable in solving large-scale problems. The results of this study can be used as a management tool in solving types of population-based partitioning problems, including the problems of health systems.

کلیدواژه‌ها [English]

  • hierarchical partitioning
  • gray wolf algorithm
  • genetic algorithm
[1]    A. Pariatamby and M. Tanaka, "Municipal solid waste management in Asia and the Pacific Islands," Environmental Science, Springer, Singapore, 2014.
[2]    J. Kalcsics, "Districting problems," in Location science: Springer, 2015, pp. 595-622.
[3]    H.-Y. Lin and J.-J. Kao, "Subregion districting analysis for municipal solid waste collection privatization," Journal of the Air & Waste Management Association, vol. 58, no. 1, pp. 104-111, 2008.
[4]    G. Ghiani, A. Manni, E. Manni, and M. Toraldo, "The impact of an efficient collection sites location on the zoning phase in municipal solid waste management," Waste management, vol. 34, no. 11, pp. 1949-1956, 2014.
[5]    S. BabaeiMorad, H. Bagheri, and J. B. Behnamian, "A Hierarchical Covering Location Model with a Multi Period under Uncertainty," Modern Research in Decision Making, vol. 4, no. 1, pp. 25-53, 2019.
[6]    M. Faccio, A. Persona, and G. Zanin, "Waste collection multi objective model with real time traceability data," Waste Management, vol. 31, no. 12, pp. 2391-2405, 2011/12/01/ 2011.
[7]    Ş. Şener, E. Sener, and R. Karagüzel, "Solid waste disposal site selection with GIS and AHP methodology: a case study in Senirkent–Uluborlu (Isparta) Basin, Turkey," Environmental monitoring and assessment, vol. 173, no. 1-4, pp. 533-554, 2011.
[8]    F. Samanlioglu, "A multi-objective mathematical model for the industrial hazardous waste location-routing problem," European Journal of Operational Research, vol. 226, no. 2, pp. 332-340, 2013.
[9]    M. Mes, M. Schutten, and A. P. Rivera, "Inventory routing for dynamic waste collection," Waste management, vol. 34, no. 9, pp. 1564-1576, 2014.
[10] S. Das and B. K. Bhattacharyya, "Optimization of municipal solid waste collection and transportation routes," Waste Management, vol. 43, pp. 9-18, 2015.
[11] A. M. Niziolek, O. Onel, M. F. Hasan, and C. A. Floudas, "Municipal solid waste to liquid transportation fuels–Part II: Process synthesis and global optimization strategies," Computers & Chemical Engineering, vol. 74, pp. 184-203, 2015.
[12] A. Louati, "Modeling municipal solid waste collection: A generalized vehicle routing model with multiple transfer stations, gather sites and inhomogeneous vehicles in time windows," Waste Management, vol. 52, pp. 34-49, 2016.
[13] M. J. Cortinhal, M. C. Mourão, and A. C. Nunes, "Local search heuristics for sectoring routing in a household waste collection context," European Journal of Operational Research, vol. 255, no. 1, pp. 68-79, 2016.
[14] H. Asefi and S. Lim, "A novel multi-dimensional modeling approach to integrated municipal solid waste management," Journal of Cleaner Production, vol. 166, pp. 1131-1143, 2017.
[15] C. Hu, X. Liu, and J. Lu, "A bi-objective two-stage robust location model for waste-to-energy facilities under uncertainty," Decision Support Systems, vol. 99, pp. 37-50, 2017.
[16] F. Habibi, E. Asadi, S. J. Sadjadi, and F. Barzinpour, "A multi-objective robust optimization model for site-selection and capacity allocation of municipal solid waste facilities: A case study in Tehran," Journal of Cleaner Production, vol. 166, pp. 816-834, 2017.
[17] N. S. Sharif, M. S. Pishvaee, A. Aliahmadi, and A. Jabbarzadeh, "A bi-level programming approach to joint network design and pricing problem in the municipal solid waste management system: A case study," Resources, Conservation and Recycling, vol. 131, pp. 17-40, 2018.
[18] G. M. Hoang, T. Fujiwara, T. S. P. Phu, and L. D. Nguyen, "Sustainable solid waste management system using multi-objective decision-making model: a method for maximizing social acceptance in Hoi An city, Vietnam," Environmental Science and Pollution Research, pp. 1-11, 2018.
[19] V. Yadav, S. Karmakar, A. Dikshit, and A. Bhurjee, "Interval-valued facility location model: An appraisal of municipal solid waste management system," Journal of Cleaner Production, vol. 171, pp. 250-263, 2018.
[20] C. Gambella, F. Maggioni, and D. Vigo, "A stochastic programming model for a tactical solid waste management problem," European Journal of Operational Research, 2018.
[21] M. Notash, M. Zandieh, and B. Dorri Nokorani, "Using a Genetic Algorithm Approach for Designing Multi-objective Supply Chain Network," (in eng), Management Research in Iran, vol. 18, no. 4, pp. 183-203, 2015.
[22] m. soltani tehrani, h. hassanpour, and S. Ramezani, "Two-objective optimization model of costs and carbon dioxide in closed loop supply chain," (in eng), Management Research in Iran, vol. 19, no. 1, pp. 169-189, 2015.
[23] M. Modiri, "Ranking of hospital waste disposal outsourcing companies with the new fuzzy multiple criteria decision-making hybrid method and grey," Modern Research in Decision Making, vol. 5, no. 1, pp. 1-23, 2020.
[24] H. Farughi, S. Mostafayi, and J. Arkat, "Healthcare Districting Optimization Using Gray Wolf Optimizer and Ant Lion Optimizer Algorithms (case study: South Khorasan Healthcare System in Iran)," Journal of Optimization in Industrial Engineering, vol. 12, no. 1, pp. 119-131, 2019.
[25] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, "Grey wolf optimizer: a review of recent variants and applications," Neural computing and applications, vol. 30, no. 2, pp. 413-435, 2018.
[26] F. Ghollasimood, H. Hoseini-nasab, J. Tayyebi, and M. Fakhrzad, "Distribution Center Positioning and Territory Design in Supply Chain," Industrial Management Journal, vol. 11, no. 1, pp. 133-156, 2019.
[27] M. T. A. Steiner, D. Datta, P. J. S. Neto, C. T. Scarpin, and J. R. Figueira, "Multi-objective optimization in partitioning the healthcare system of Parana State in Brazil," Omega, vol. 52, pp. 53-64, 2015.
[28] Y. Deng, Y. Liu, and D. Zhou, "An improved genetic algorithm with initial population strategy for symmetric TSP," Mathematical Problems in Engineering, vol. 2015, 2015.
[29] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Advances in engineering software, vol. 69, pp. 46-61, 2014.