موازنه زمان-هزینه-کیفیت در شبکه‌های PERT با استفاده از شبکه‌ عصبی و الگوریتم-های تکاملی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مدیریت صنعتی گرایش تحقیق در عملیات، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران

2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران

3 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.

4 استادیار، گروه مدیریت صنعتی، دانشکده اقتصاد و مدیریت، دانشگاه یزد، یزد، ایران

چکیده

از اهداف مهم هر پروژه زمان، هزینه و کیفیت می‌باشند. امروزه، ذی‌نفعان هر پروژه به دنبال کاهش هزینه‌های کل پروژه همزمان با کاهش زمان و افزایش کیفیت پروژه می‌باشند. این مسئله پژوهشگران را به سوی توسعه مدل‌هایی که عامل کیفیت را به مدل‌های قبلی موازنه هزینه -زمان می‌افزاید، هدایت می‌کند. در این مقاله یک مدل موازنه زمان – هزینه – کیفیت با سه تابع هدف، کمینه کردن زمان ختم پروژه، کمینه کردن هزینه کل پروژه و بیشینه کردن کیفیت کل انجام فعالیت‌ها در یک شبکه PERT با فعالیت‌های چند حالته مورد بررسی قرار گرفت. بعد از ارائه مدل ریاضی مناسب، بر اساس یک طرح آزمایش برای سطوح ممکن هر متغیر تصمیم تعیین گردید. سپس با استفاده از فرایند شبیه‌سازی، مقادیر تصادفی متغیرهای تصمیم و متغیرهای پاسخ در هر بار اجرا حاصل و با به کارگیری شبکه‌های عصبی، یک مدل شبکه عصبی برقرار گردید. برای حل این مدل، از آنجا که مسئله مورد نظر در مقوله NP-hard قرار می‌گیرد، از دو الگوریتم NSGA-II و MOPSO استفاده گردید. برای ارزیابی کارایی مدل، مسائل مورد نظر در یک شبکه PERT با مقیاس‌های کوچک، متوسط و بزرگ آزمایش شد. پارامترهای این دو الگوریتم فراابتکاری به وسیله روش تاگوچی تنظیم و نتایج به دست آمده بر مبنای پارامترهای تنظیم شده نشان داد که الگوریتم NSGA-II نسبت به MOPSO عملکرد بهتری دارد

کلیدواژه‌ها


عنوان مقاله [English]

Time-Cost-Quality Trade Off in PERT Networks Using Neural Network and Evolutionary Algorithms

نویسندگان [English]

  • ahmad Yousefi Hanoomarvar 1
  • maghsoud amiri 2
  • laya olfat 3
  • alireza naser sadrabadi 4
1 PhD Student, Industrial Management, Operations Research, School of Management and Accounting, Allameh Tabatabai University, Tehran, Iran
2 Professor, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran
3 Professor, Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.
4 Assistant Professor, Department of Industrial Management, Faculty of Economics and Management, Yazd University, Yazd, Iran
چکیده [English]

Time, cost and quality are important goals of any project. Todays, the demand of project stakeholders to reduce total project costs has increased simultaneously time reduction and augment in quality of the project. This leads researchers to develop models that add quality factor to previous models of cost-time balance. In this paper, a time-cost-quality trade -off model with three objective functions includes minimizing project termination, minimizing total project cost and maximizing total quality of activities in a multi-modal PERT network was investigated. After presenting the appropriate mathematical model, a decision was made on the basis of a test plan of possible levels for each variable. Then, using the simulation process, random values of decision variables and response variables were implemented at each time, and we developed a neural network model using artificial neural networks. To solve this model, since the problem is in the NP-hard category, two multi-objective meta-heuristic algorithms NSGA-II and MOPSO were used. To determine the performance of the proposed model, the problem was tested on a small, medium and large-scale PERT network. The parameters of these two meta-heuristic algorithms were adjusted by Taguchi method and the results were based on the parameters set showed that the NSGA-II algorithm performs better than the MOPSO algorithm.

کلیدواژه‌ها [English]

  • MOPSO Algorithm
  • NSGA-II algorithm
  • PERT network
  • Simulation
  • Project Management
[1]      Aminbakhsh, S., & Sonmez, R. (2016). Discrete particle swarm optimization method for the large-scale discrete time–cost trade-off problem. Expert Systems with Applications, 51, 177-185.
[2]      Amiri, Maghsoud, Azimi, Parham, Zandieh, Mustafa, Hadi Nejad, Farhad. (2017). Optimizing the reliability of military equipment and weapons with a hybrid approach of simulation and meta-algorithms. Military Management Quarterly, 16 (64), 125-164. (In Persian)
[3]      Azaron, A., & Tavakkoli-Moghaddam, R. (2007). Multi-objective time–cost trade-off in dynamic PERT networks using an interactive approach. European Journal of Operational Research, 180(3), 1186-1200.
[4]      Azaron, A., Perkgoz, C., & Sakawa, M. (2005). A genetic algorithm approach for the time-cost trade-off in PERT networks. Applied mathematics and computation, 168(2), 1317-1339.
[5]      Azimi, Parham. Ismati, Alireza. Farajpour, Mehdi. Farzin, Ehsan. (2013). Optimization via Simulation with ED Software Comprehensive Training. Azad University Publications. (In Persian)
[6]      Babu, A. J. G., & Suresh, N. (1996). Project management with time, cost, and quality considerations. European Journal of Operational Research, 88(2), 320-327.
[7]      Chambari, Amirhossain, Seyed Habib A. Rahmati, and Amir Abbas Najafi. "A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies." Computers & Industrial Engineering 63, no. 1 (2012): 109-119.
[8]      Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (Vol. 5, pp. 79-104). New York: Springer.
[9]      Coello, C. C., & Lechuga, M. S. (2002, May). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600) (Vol. 2, pp. 1051-1056). IEEE.
[10]   Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization. Journal of Multi‐Criteria Decision Analysis, 7(1), 34-47.
[11]   Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International conference on parallel problem solving from nature (pp. 849-858). Springer, Berlin, Heidelberg.
[12]   Demeulemeester, E. L., & Herroelen, W. S. (2006). Project scheduling: a research handbook (Vol. 49). Springer Science & Business Med.
[13]   Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). RanGen: A random network generator for activity-on-the-node networks. Journal of scheduling, 6(1), 17-38.
[14]   ghafoori, S., taghizadeh yazdi, M. (2017). Proposing a Multi-Objective Mathematical Model for RCPSP and Solving It with Firefly and Simulated Annealing algorithms. Modern Research in Decision Making, 1(4), 117-142. )In Persian)
[15]   Hamta, N., Ehsanifar, M., Moghaddasi, A. (2018). An Investigation of Iranian Entrepreneurs’ Decision Making Logic Based On Effectuation Theory. Modern Research in Decision Making, 2(4), 255-273. (In Persian)
[16]   Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia
[17]   Karimi, N., Zandieh, M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: a multi-phase approach. Expert Systems with Applications, 37(6), 4024-4032.
[18]   Kazaz, A., Ulubeyli, S., Er, B., & Acikara, T. (2016). Construction Materials-based Methodology for Time-Cost-quality Trade-off Problems. Procedia engineering, 164, 35-41.
[19]   Khang, D. B., & Myint, Y. M. (1999). Time, cost and quality trade-off in project management: a case study. International journal of project management, 17(4), 249-256.
[20]   Maghsoudlou, H., Afshar-Nadjafi, B., & Niaki, S. T. A. (2016). A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem. Computers & Chemical Engineering, 88, 157-169.
[21]   Monghasemi, S., Nikoo, M. R., Fasaee, M. A. K., & Adamowski, J. (2015). A novel multi criteria decision making model for optimizing time–cost–quality trade-off problems in construction projects. Expert systems with applications, 42(6), 3089-3104.
[22]   Mungle, S., Benyoucef, L., Son, Y. J., & Tiwari, M. K. (2013). A fuzzy clustering-based genetic algorithm approach for time–cost–quality trade-off problems: A case study of highway construction project. Engineering Applications of Artificial Intelligence, 26(8), 1953-1966.
[23]   Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm intelligence, 1(1), 33-57.
[24]   Pour, N. S., Modarres, M., Aryanejad, M., & Moghadam, R. T. (2010). The discrete time-cost-quality trade-off problem using a novel hybrid genetic algorithm. Applied Mathematical Sciences, 4(42), 2081-2094.
[25]   Project Management Institute. (2018). A Guide to the Project Management Body of Knowledge (PMBOK® Guide)-(JAPANESE). Project Management Institute.
[26]   Saif, A., Abbas, S., & Fayed, Z. (2015). The PDBO algorithm for discrete time, cost and quality trade-off in software projects with expressing quality by defects. Procedia Computer Science, 65, 930-939.
[27]   Tareghian, H. R., & Taheri, S. H. (2006). On the discrete time, cost and quality trade-off problem. Applied mathematics and computation, 181(2), 1305-1312.
[28]   Tran, D. H., Cheng, M. Y., & Cao, M. T. (2015). Hybrid multiple objective artificial bee colony with differential evolution for the time–cost–quality tradeoff problem. Knowledge-Based Systems, 74, 176-186.
[29]   Wood, D. A. (2017). Gas and oil project time-cost-quality tradeoff: Integrated stochastic and fuzzy multi-objective optimization applying a memetic, nondominated, sorting algorithm. Journal of Natural Gas Science and Engineering, 45, 143-164.
[30]   Zhang, H., & Xing, F. (2010). Fuzzy-multi-objective particle swarm optimization for time–cost–quality tradeoff in construction. Automation in Construction, 19(8), 1067-1075.