ارائه یک مدل ریاضی در زنجیره تامین هوشمند بر مبنای ICPT در محیط MTS

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشکده صنایع، دانشگاه یزد، یزد، ایران

2 دانشجوی دکتری، دانشکده صنایع، دانشگاه یزد، یزد، ایران

3 استادیار، گروه مهندسی صنایع، دانشگاه میبد، یزد، ایران

چکیده

با توجه به افزایش الزامات در صنعت تولید و پیشرفت سریع تکنولوژی، زنجیره تامین‌های سنتی با چالش های زیادی مانند تغییرات تقاضا و مشکلات حمل و نقل مواجه هستند به طوری‌که آن‌ها نیاز به انعطاف‌پذیری در ظرفیت، زمان تدارک و کانال‌های توزیع دارند. در این پژوهش برای غلبه بر مشکلات زنجیره تامین سنتی، یک زنجیره تامین مبتنی بر ICPT به نام زنجیره تامین هوشمند در محیط تولیدی MTS شامل چهار سطح تولید کننده، انبار، توزیع کننده و مشتری در نظر گرفته شده است که هدف حداکثر سازی سود و حداقل نمودن زمان تدارک می‌باشد. در ابتدا یک مدل غیرخطی عدد صحیح مختلط برای این مساله ارائه شد سپس یک نمونه مساله توسط روش محدودیت اپسیلون تقویت شده در نرم‌افزار GAMS حل و نتایج آن تحلیل گردید. در ادامه دو سناریوی افزایش تقاضا و اضافه شدن محصول جدید نیز مورد بررسی قرار گرفته شد که نتایج بیان‌کننده صحت مدل و کارآیی روش پیشنهادی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

A mathematical model in the smart supply chain based on ICPT in the MTS environment

نویسندگان [English]

  • Mohammad Bagher Fakhrzad 1
  • Marzie Keshavarz 2
  • Abbasali Jafari Nodoushan 3
1 Professor, Faculty of Industry, Yazd University, Yazd, Iran
2 PhD Student, Faculty of Industry, Yazd University, Yazd, Iran
3 Assistant Professor, Department of Industrial Engineering, Meybod University, Yazd, Iran
چکیده [English]

Due to the increasing requirement in the manufacturing industry and the rapid development of technology, the traditional supply chains face many challenges such as changes in demand and transportation problems so that they need the flexibility in capacity, lead time, and distribution channels. In this research, in order to overcome the problems of the traditional supply chain, a supply chain based on ICPT in the MTS production environment called smart supply chain is considered where including four levels of manufacturer, warehouse, distributor, and customer that the goal is to maximize profits and minimize lead time. At first, a Mixed Integer Non-Linear Programming was proposed for the problem, then a sample problem was solved by the augmented ε-constraint technique in GAMS and the results were analyzed. Two scenarios of increment of demand and adding a new product were examined which all of them showed the accuracy of the model and the efficiency of the proposed method.

کلیدواژه‌ها [English]

  • Smart supply chain
  • Augmented ε-constraint
  • Make to Stock
  • Information Communication and Production Technologies (ICPT)
[1]    Karami, E. Arab, A. Fallah Lajimi, H. Impacts of success Key factors of supply chain agility on the strategic performance of the Electronics companies in Iran. Management Researches in Iran. 2016, 19(4): 186-206.
[3]    Fakhrzad, M.B., Khalifehzadeh, Sasan., A modified firefly algorithm for optimizing a multi stage supply chain network with stochastic demand and fuzzy production capacity, Computers & Industrial Engineering, 2019, 133, 42-56.
[4]    Oh, J. Jeong, B. Tactical supply planning in smart manufacturing supply chain. Robotics and Computer Integrated Manufacturing. 2019, 55(B): 217-233.
[5]    Abarqhouei Sadra, N., Hosseini Nasab, H., Fakhrzad, MB., Macro ergonomics interventions and their impact on productivity and reduction of musculoskeletal disorders: including a case study, Iran occupational health, 2012, 9(2), 27-39.
[6]    Bochmann, L. Gehrke, L. Bockenkamp, A. Weichert, F. Albersmann, R. Prasse, C. Mertens, C. Motta, M. Wegener, K. Towards Decentralized Production: A Novel Method to Identify Flexibility Potentials in Production Sequences Based on Flexibility Graphs. International. J. of Automation Technology. 2015, 9(3): 270–282.
[7]    Fakhrzad, MB., Fallah Nezhad, MS., Determining an economically optimal (n, c) design via using loss functions, International Journal of Engineering, 2012, 25 (3), 197-202.
[8] Eslamipoor, R., Fakhrzad, MB,. Zare Mehrjerdi, Y,. A new robust optimization model under uncertainty for new and remanufactured products, International Journal of Management Science and Engineering Management, 2015, 10(2), 137-142
[9]    Phuyal, S. Bista, D. Bista, R. Challenges, Opportunities and Future Directions of Smart Manufacturing: A State of Art Review. Sustainable Futures. 2020, 2: 100023.
[10] Sadeghi Moghaddam, M. Karimi, T. Bandesi, Sahar. Service Supply Chain Risk Assessment Applying Rough Set Theory Approach: Case of Payment Service Providers. Management Researches in Iran. 2018, 22(1): 69-94.

[11] Ahmadiazar, M. Dorri, B. Alem Tabriz, A. Kassai, M. Modeling and Solving Problem Sustainable Closed Loop Supply Chain Network Design for Petrochemical Products under Uncertainty Conditions. Modern Researches in Decision Making. 2020, 4(4): 1-30.

[12] Dorri, M. Jafari Eskandari, M. Chaharsoghi, K. Choosing coordinated ordering policy in the two-level supply chain: A game theory approach. Modern Researches in Decision Making. 2019, 4(3): 47-73.

[13] Jalalifar, S. Ehtesham Rasi, R. Mohtashami, A. Design a Fuzzy Goal Programming Model for Optimizing the Cost and Distance of Vehicles in the Four-Echelon Closed-Loop Supply Chain by Using Ant Colony Algorithm. Modern Researches in Decision Making. 2021, 6(1): 148-169.

[14] Tuptuk, N, & Hailes, S. Security of smart manufacturing systems. Journal of Manufacturing Systems. 2018, 47: 93-106.
[15] Ahuett-Garza, H, Kurfess, T. A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart Manufacturing. Manufacturing Letters. 2018, 15(B): 60-63.
[16] Lee, J. Bagheri, B. Kao, H.A. A cyber-physical systems architecture for industry 4.0- based manufacturing systems. Manufacturing Letters. 2015, 3: 18–23.
[17] Zawadzki, P. & Żywicki, K. Smart product design and production control for effective mass customization in the industry 4.0 concept. Management and Production Engineering Review. 2016, 7(3): 105–112.
[18] Ivanov, D. Dolgui, A. Sokolov, B. Werner, F. Ivanova, M. A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0. International Journal of Production Research. 2015, 54(2): 386–402.
[19] Lyu, Z. Lin, P. Guo, D. Huang, G.Q. Towards Zero-Warehousing Smart Manufacturing from Zero-Inventory Just-In-Time production. Robotics and Computer Integrated Manufacturing. 2020, 64: 101932.

[20] Edgar, T.F. Pistikopoulos, E.N. Smart Manufacturing and Energy Systems. Computers & Chemical Engineering. 2018, 114(3): 130-144.

[21] Lu, H.P. Weng, C.I. Smart manufacturing technology, market maturity analysis and technology roadmap in the computer and electronic product manufacturing industry. Technological Forecasting & Social Change. 2018, 133(C): 85-94.
[22] Zheng, M. Wub, K., Suna, C. Pana, E. Optimal decisions for a two-echelon supply chain with capacity and demand information. Advanced Engineering Informatics. 2019, 39: 248–258.
[23] Glas, A.H. Kleemann, F.C. The impact of industry 4.0 on procurement and supply management: a conceptual and qualitative analysis. International Journal of Business and Management Invention. 2016, 5(6): 55 66.
[24] Abdel-Basset, M. Manogaran, G. Mohamed, M. Internet of Things (IoT) and its impact on supply chain: A framework for building smart, secure and efficient systems. Future Generation Computer Systems.  2018, 86: 614-628.
[25] Mavrotas, G, Florios, K. An improved version of the augmented e-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Applied Mathematics and Computation. 2013, 219(18): 9652-9669.