طراحی یک سیستم بهبود یافته استنتاج عصبی – فازی مبتنی بر الگوریتم بهینه‌سازی وال به منظور پیش بینی میزان اهدای خون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

2 دانشیار، گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

3 استاد، گروه مدیریت صنعتی، دانشگاه علامه طباطبایی، تهران، ایران.

4 استادیار، گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

چکیده

یکی از تکنیک‌‌‌های مناسب برای حل مسائل مهندسی جهت پیش‌بینی متغیر‌‌ها در زنجیره تأمین و نیز سیستم‌‌‌هایی که دارای پیچیدگی و عدم صراحت زیاد بوده و یا داده‌‌‌های کافی درمورد آن‌‌‌ها موجود نیست، استفاده از تئوری مجموعه‌‌‌های فازی و شبکه عصبی مصنوعی بوده است. این روش نسبت به سایر روش‌‌‌ها در زمان نسبتا کوتاه‌تری به بررسی داده‌‌‌ها وکشف الگوی نهفته در آن جهت پیش‌بینی و یا تأثیرگذاری آن بر آینده می‌پردازد. سیستم استناج عصبی-فازی (انفیس)، شبکه‌‌‌های عصبی و مفاهیم منطق فازی را یکی می‌کند، می‌تواند از امکانات هر دو آن‌‌‌ها در یک قاب بهره برد، که سیستم استنتاج آن مطابق با مجموعه قوانین فازی اگر-آنگاه است که قابلیت یادگیری برای تقریب زدن توابع غیرخطی را دارد. تعریف متغیر‌‌‌ها بر اساس داده‌‌‌های گذشته و تأثیر آن متغیر‌‌‌ها در توالی‌‌‌های زمانی گذشته به منظور پیش‌بینی وضعیت آینده از جمله کاربرد این روش است. لذا در این تحقیق به منظور پیش‌بینی میزان اهدای خون در مراکز اهدای خون بر اساس داده‌‌‌های سال‌‌‌های گذشته از تکنیک انفیس استفاده شده، از آنجایی که هر روش پیش‌بینی دارای میزان خطای مخصوص به خود است. به منظور کاهش خطای روش مذکور از الگوریتم فراابتکاری وال به منظور بهبود مقادیر پارامتر‌‌‌های سیستم عصبی -فازی استفاده شده که نتایج حاصله نشان دهنده کاهش خطای جذر میانگین مربعات پیش‌بینی از 0.00261 به 0.00153 در الگوریتم ترکیبی انفیس-وال و بهبود 41 درصدی آن نسبت به روش انفیس خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Designing an improved Adaptive Neuro-Fuzzy Inference System based on Whale Optimization Algorithm to predict blood donation

نویسندگان [English]

  • taher Kouchaki Tajani 1
  • Ali Mohtashami 2
  • maghsoud amiri 3
  • Reza Ehtesham Rasi 4
1 Ph.D. Student, Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
2 Associate Professor, Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
3 Professor, Department of Industrial Management, Allameh Tabataba'i University, Tehran, Iran
4 Assistant Professor, Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
چکیده [English]

Artificial neural networks and fuzzy sets theory is one of appropriate techniques to solve engineering problems in order to predict variables of supply chains and, also, of systems with high complexity and implicitly which provide no sufficient data. The main advantage of this technique over others, which lies in the short time of data examination and algorithm discovery, is in the line with that prediction and/or its influence on the future. Adaptive neuro-fuzzy inference system (ANFIS) combines neural networks with fuzzy logic concepts and is able to use capabilities of both in one framework, the inference system of which is in conformity to fuzzy "if-then" rules having potential for learning how to approximate non-linear functions. Among applications of this technique are to define variables based on the past data and their impacts on the past temporal sequences in order to predict future conditions. This research, therefore, uses neuro-fuzzy technique in order to blood donation based on data from the past years. Since each technique has its own error rates, Metaheuristic Whale Algorithm is used to reduce errors of ANFIS by improving the parameter values of neuro-fuzzy systems. The obtained results show a reduction of the RMSE of prediction from 0.00261 to 0.00153 in the ANFIS-WOA and a 41% improvement over the ANFIS method.

کلیدواژه‌ها [English]

  • Adaptive neuro-fuzzy networks
  • Fuzzy systems
  • Neural Networks
  • Whale algorithm
  • Whale-ANFIS
[1]  Williamson, L.M. and D.V. Devine, Challenges in the management of the blood supply. The Lancet, 2013. 381(9880): p. 1866-1875.
[2]  Eskandari-Khanghahi, M., et al., Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Engineering Applications of Artificial Intelligence, 2018. 71: p. 236-250.
[3]  Privett, N. and D. Gonsalvez, The top ten global health supply chain issues: perspectives from the field. Operations Research for Health Care, 2014. 3(4): p. 226-230.
[4]  Peña, J.R.A., Utilization management in the blood transfusion service. Clinica Chimica Acta, 2014. 427: p. 178-182.
[5]  Duan, Q. and T.W. Liao, Optimization of blood supply chain with shortened shelf lives and ABO compatibility. International Journal of Production Economics, 2014. 153: p. 113-129.
[6]  Beale, H.D., H.B. Demuth, and M. Hagan, Neural network design. Pws, Boston, 1996.
[7]  Mirfakhraddiny, S.H., H. BabaeiMeybodi, and A. Morovati sharifabadi, Forecast consumption energy of Iran using Hybrid model of artificial neural networks and genetic algorithms and Compared with traditional methodes. Management Research in Iran, 2013. 17(2): p. 196-222.
[8]  Czogala, E. and J. Leski, Fuzzy and neuro-fuzzy intelligent systems. Vol. 47. 2012: Physica.
[9]  Chen, C.P., Y.-J. Liu, and G.-X. Wen, Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Transactions on Cybernetics, 2013. 44(5): p. 583-593.
[10]   Ocampo-Duque, W., et al., A concurrent neuro-fuzzy inference system for screening the ecological risk in rivers. Environmental Science and Pollution Research, 2012. 19(4): p. 983-999.
[11]   Akbarzadeh-T, M.-R., I. Mosavat, and S. Abbasi. Friendship modeling for cooperative co-evolutionary fuzzy systems: a hybrid GA-GP algorithm. in 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003. 2003. IEEE.
[12]   Mirahadi, F. and T. Zayed, Simulation-based construction productivity forecast using neural-network-driven fuzzy reasoning. Automation in Construction, 2016. 65: p. 102-115.
[13]   Rutkowska, D., Neuro-fuzzy architectures and hybrid learning. Vol. 85. 2012: Physica.
[14]   Mirjalili, S. and A. Lewis, The whale optimization algorithm. Advances in engineering software, 2016. 95: p. 51-67.
[15]   Bagheri, A., et al., Design of ANFIS networks using hybrid genetic and SVD method for the prediction of coastal wave impacts, in Applications of Soft Computing. 2009, Springer. p. 83-92.
[16]   Marzbanrad, J. and A. Jamali, Design of ANFIS networks using hybrid genetic and SVD methods for modeling and prediction of rubber engine mount stiffness. International Journal of Automotive Technology, 2009. 10(2): p. 167-174.
[17]   Zangeneh, A.Z., et al. Training ANFIS system with DE algorithm. in The Fourth International Workshop on Advanced Computational Intelligence. 2011. IEEE.
[18]   Wang, J.-S. and C.-X. Ning, ANFIS Based time series prediction method of bank cash flow optimized by adaptive population activity PSO algorithm. Information, 2015. 6(3): p. 300-313.
[19]   Khoshbin, F., et al., Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Engineering Optimization, 2016. 48(6): p. 933-948.
[20]   Jaafari, A., S.V.R. Termeh, and D.T. Bui, Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability. Journal of environmental management, 2019. 243: p. 358-369.
[21]   Bosnes, V., M. Aldrin, and H.E. Heier, Predicting blood donor arrival. Transfusion, 2005. 45(2): p. 162-170.
[22]   Darwiche, M., et al. Prediction of blood transfusion donation. in 2010 Fourth International Conference on Research Challenges in Information Science (RCIS). 2010. IEEE.
[23]   Ensafian, H., S. Yaghoubi, and M.M. Yazdi, Raising quality and safety of platelet transfusion services in a patient-based integrated supply chain under uncertainty. Computers & Chemical Engineering, 2017. 106: p. 355-372.
[24]   Firouzi jahantigh, F., B. Fanoodi, and S. Khosravi, A Demand Forcasting Model for the Blood Platelet Supply Chain with Artificial Neural Network Approach and Arima Models. The Scientific Journal of Iranian Blood Transfusion Organization, 2017. 14(4): p. 335-345.
[25]   Volken, T., et al., Red blood cell use in Switzerland: trends and demographic challenges. Blood transfusion, 2018. 16(1): p. 73.
[26]   Alajrami, E., et al., Blood Donation Prediction using Artificial Neural Network. 2019.
[27]   Shashikala, B., M. Pushpalatha, and B. Vijaya, Machine Learning Approaches for Potential Blood Donors Prediction, in Emerging Research in Electronics, Computer Science and Technology. 2019, Springer. p. 483-491.
[28]   Ahmadimanesh, M., et al., Determining the optimal amount of blood sent to hospitals in the blood transfusion network (Case study: Mashhad blood transfusion center). Modern Research in Decision Making, 2020. 5(3): p. 210-231.
[29]   Moradi, M., Applying Optimized Adaptive Neuro-Fuzzy Inference System to Predict the Personnel Efficiency. Management Research in Iran, 2014. 18(3): p. 133-157.
[30]   Alinejad, A.H. and A. Azar, Designing a Model of Neural-Adaptive Fuzzy Inference System (ANFIS) to Evaluate and Predict Organizational Knowledge Management Level with Innovation Focus. Modern Research in Decision Making, 2020. 5(1): p. 171-189.