پیکربندی زنجیره تأمین مبتنی بر قیمت‌گذاری پویا و بهینه‌سازی استوار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران

2 استاد، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران

3 دانشیار، دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

افزایش سطح پیچیدگی سیستم‌های تولیدی و همچنین شدت گرفتن رقابت در فضای کسب و کار، باعث شده است تا مسئله عدم‌قطعیت، به یکی از مشکلات اساسی زنجیره‌های تأمین تبدیل شود. پژوهش حاضر، با هدف مدیریت توأمان عدم‌قطعیت پارامترهای عرضه و تقاضا، به توسعه مدلی جهت پیکربندی زنجیره تأمین چند دوره‌ای، چند محصولی و چند سطحی، به منظور بیشینه‌سازی سود کل زنجیره تأمین اختصاص یافته است. در مدل حاضر عدم‌قطعیت پارامترها توسط دو رویکرد بهینه‌سازی استوار و قیمت‌گذاری پویا مهار گردید. پس از حل مدل توسط نرم‌افزار GAMS و مقایسه عملکرد مناسب آن در قیاس با یک مدل پایه قطعی، اعتبار سنجی نتایج توسط تحلیل حساسیت انجام شد. در گام بعدی با شبیه‌سازی تصادفی نوسانات عرضه و تقاضا، عملکرد مدل تحت شرایط مختلف عدم‌قطعیت مورد ارزیابی قرار گرفت و نشان داده شد که پاسخ بهینه حاصل از این مدل حتی در مواجهه با نوسانات شدید عرضه و تقاضا نیز می‌تواند در برابر ناموجه‌شدن مقاومت نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Supply chain configuration based on dynamic pricing and robust optimization

نویسندگان [English]

  • Farjam Kayedpour 1
  • Maghsoud Amiri 2
  • laya olfat 2
  • Mir Saman Pishvaee 3
1 PhD Student, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran
2 Professor, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran
3 Associate Professor, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

The complexity of the production systems and increasing competition in the business environment has made uncertainty a crucial problem in supply chain design. In this regard, this study aims to develop an optimization model to configure multi-period, multi-product and multi-echelon supply chains, managing the demand and supply uncertain parameters simultaneously to maximize the profit of the entire chain. In this model, the uncertainty of the parameters was regulated by robust optimization and dynamic pricing approaches. First, the developed model was solved using the GAMS software, then the appropriate performance of the proposed model was compared with a certain base model, the validation of results were performed using sensitivity analysis. In the next step, through simulating supply and demand fluctuations, the model's performance under different conditions of uncertainty was evaluated. The results indicate that the model's optimal solution could resist this random uncertainty, even exposing a high level of supply and demand fluctuations.

کلیدواژه‌ها [English]

  • dynamic pricing
  • Robust Optimization
  • Uncertainty Sets
  • Simulation
  • supply chain configuration
[1]          Sheffi, Y. (2005). Building A Culture Of Flexibility: Longer supply chains means more risk. What's needed is a nimble organization, World Trade, vol. 18, no. 12, p. 26.
[2]          Gong, J., Mitchell, J. E., Krishnamurthy, A., and Wallace, W. A. (2014). An interdependent layered network model for a resilient supply chain, Omega, vol. 46, pp. 104–116.
[3]          Shah, J. (2009). Supply Chain Management: Text and Cases: Pearson Education.
[4]          Chopra, S. and Sodhi, M. S. (2004). Supply-chain breakdown, MIT Sloan Management Review, vol. 46, no. 1, pp. 53–61.
[5]          Kolyaei, M., Azar, A., Amini, M., and Rajabzadeh Gatari, A. (2016). Design of integrated mathematical model for closed-loop supply chain, Management Research in Iran, vol. 20, no. 1 (in Persian).
[6]          Tavakkoli-Moghaddam, R., Omidi-Rekavandi, M., and Ghodratnama, A. (2014). Mathematical modeling for the forward and reverse logistics network design, Management Research in Iran, vol. 17, no. 4, pp. 43–63 (in Persian).
[7]          tarin, n., Azar, A., and ebrahimi, s. a. (2018). Design of multi-period Reverse logistic model with different product recovery routes under uncertainty, Modern Research in Decision Making, vol. 2, no. 4, pp. 29–56 (in Persian).
[8]          Baghalian, A., Rezapour, S., and Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, vol. 227, no. 1, pp. 199–215.
[9]          Radfar, R., khodadadian, d., and toloee eshlaghi, a. (2020). A Multi-Objective Green Supply Chain, Modern Research in Decision Making, vol. 5, no. 3, pp. 1–28 (in Persian).
[10]        Snyder, L. V. (2003). Supply chain robustness and reliability: Models and algorithms (PHD Thesis), Dept. of Industrial Engineering and Management Sciences, Northwestern University: Evanston, IL.
[11]        Bertsimas, D. and Thiele, A. A robust optimization approach to supply chain management in Integer programming and combinatorial optimization: Springer (2004), pp. 86–100.
[12]        Pishvaee, M. S., Rabbani, M., and Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty, Applied Mathematical Modelling, vol. 35, no. 2, pp. 637–649.
[13]        Ben-Tal, A., Chung, B. D., Mandala, S. R., and Yao, T. (2011). Robust optimization for emergency logistics planning, Transportation Research Part B: Methodological, vol. 45, no. 8, pp. 1177–1189.
[14]        Pan, F. and Nagi, R. (2010). Robust supply chain design under uncertain demand in agile manufacturing, Computers & Operations Research, vol. 37, no. 4, pp. 668–683.
[15]        Sangaiah, A. K., Tirkolaee, E. B., Goli, A., and Dehnavi-Arani, S. (2020). Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem, Soft Computing, vol. 24, no. 11, pp. 7885–7905.
[16]        Gholami, F., Paydar, M. M., Hajiaghaei-Keshteli, M., and Cheraghalipour, A. (2019). A multi-objective robust supply chain design considering reliability, Journal of Industrial and Production Engineering, vol. 36, no. 6, pp. 385–400.
[17]        Zarrinpoor, N. and Omidvari, Z. (2020). A Robust Optimization Model for the Strategic and Operational Design of the Oil Supply Chain, Industrial Management Perspective, vol. 10, no. 4, pp. 155–191 (in Persian).
[18]        Almaraj, I. I. and Trafalis, T. B. (2019). An integrated multi-echelon robust closed- loop supply chain under imperfect quality production, Green Manufacturing and Distribution in the Fashion and Apparel Industries, vol. 218, pp. 212–227.
[19]        Hosseini-Motlagh, S.-M., Samani, M. R., and Abbasi Saadi, F. (2019). Strategic optimization of wheat supply chain network under uncertainty, Operational Research.
[20]        Barzinpour, F. and Taki, P. (2016). A dual-channel network design model in a green supply chain considering pricing and transportation mode choice, Journal of Intelligent Manufacturing, pp. 1–19.
[21]        Tang, O., Nurmaya Musa, S., and Li, J. (2012). Dynamic pricing in the newsvendor problem with yield risks, International Journal of Production Economics, vol. 139, no. 1, pp. 127–134.
[22]        Ahmadi-Javid, A. and Ghandali, R. (2014). An efficient optimization procedure for designing a capacitated distribution network with price-sensitive demand, Optim Eng, vol. 15, no. 3, pp. 801–817.
[23]        Ahmadi-Javid, A. and Hoseinpour, P. (2015). Incorporating location, inventory and price decisions into a supply chain distribution network design problem, Computers & Operations Research, vol. 56, pp. 110–119.
[24]        Fattahi, M., Mahootchi, M., Govindan, K., and Moattar Husseini, S. M. (2015). Dynamic supply chain network design with capacity planning and multi-period pricing, Transportation Research Part E: Logistics and Transportation Review, vol. 81, pp. 169–202.
[25]        Li, Z., Ding, R., and Floudas, C. A. (2011). A comparative theoretical and computational study on robust counterpart optimization, Ind. Eng. Chem. Res., vol. 50, no. 18, pp. 10567–10603.
[26]        Peng, P., Snyder, L. V., Lim, A., and Liu, Z. (2011). Reliable logistics networks design with facility disruptions, Supply chain disruption and risk management, vol. 45, no. 8, pp. 1190–1211.