طراحی مدل چند هدفه فازی برای بهینه سازی مکان یابی تسهیلات در زنجیره تامین کالای فاسد شدنی با استفاده از ترکیب دو الگوریتم ابتکاری تجزیه بندرز و آزاد سازی لاگرانژ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 استادیار،گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

3 دانشیار گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه آزاد اسلامی قزوین، قزوین، ایران

چکیده

زنجیره‌ تامین چهار سطحی مواد غذایی فاسدشدنی به دلیل تغییرات مداوم و قابل توجه در کیفیت محصولات غذایی در سراسر زنجیره تا زمان مصرف نهایی جزو زنجیره‌های تامین محصولات متفاوت محسوب می‌گردد. هدف از پژوهش حاضر، طراحی مدل چند هدفه فازی برای بهینه سازی مکان یابی تسهیلات در زنجیره تامین کالای فاسد شدنی با استفاده از ترکیب دو الگوریتم ابتکاری تجزیه بندرز و آزاد سازی لاگرانژ است. تحقیق حاضر از نظر هدف کاربردی و از نظر روش گردآوری اطلاعات میدانی است. در این پژوهش، مدل ریاضی برای مسئله مکان‌یابی تسهیلات در یک زنجیره تامین چهار سطحی برای محصولات فاسدشدنی با رویکرد بهینه‌سازی همزمان هزینه‌های زنجیره تامین، زمان تحویل سفارش، انتشار آلاینده‌ها و سطح رضایت مشتریان ارائه می‌گردد. برای سنجش اعتبار پژوهش، مدل ریاضی در صنایع غذایی کاله مورد مطالعه قرار گرفت و مسئله پژوهش در قالب یک مدل چندهدفه برنامه‌ریزی غیرخطی عدد صحیح مختلط ارائه گردید. نتایج الگوریتم پیشنهادی در مطالعه موردی حل و نتایج حاصل از عملکرد الگوریتم بر اساس شاخص‌های استاندارد بررسی و در نهایت نتایج محاسباتی، نشانگر کارایی الگوریتم برای طیف وسیعی از مسائل با اندازه‌های متفاوت است.

کلیدواژه‌ها


عنوان مقاله [English]

Design Fuzzy Multi - Objective Model for Optimization of Facility Location in A Perishable Products of Supply Chain Using the Combination of Two Heuristic Benders and Lagrange Algorithms

نویسندگان [English]

  • hamidreza Mohamadi 1
  • Reza Ehtesham Rasi 2
  • Ali Mohtashami 3
1 Ph.D. Student, Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
3 Associate Professor of Industrial Engineering & Management, Faculty of industrial management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

Four - level supply chain is a chain of different products because of continuous and significant changes in the quality of food products throughout the supply chain. The aim of this paper is designing a fuzzy multi - objective model for optimization of facility location in a perishable products of supply chain using the combination of two heuristic Banders and Lagrange algorithms. The present study is applicable in terms of purpose and data collection method. in this study, the mathematical model for the problem of locating facility in a four - level supply chain for perishable products is presented at the same time the supply chain costs, order delivery time, emissions and customer satisfaction level. to evaluate the validity of the research, the mathematical model was studied in Kaleh food industries and the research problem was presented in the form of a nonlinear model of complex integer programming. the results of the proposed algorithm in the case study of the solution and the results of the algorithm performance based on standard indices and finally computational results show the performance of the algorithm for a wide range of different.

کلیدواژه‌ها [English]

  • Perishable products supply chain
  • Multi-objective model
  • Optimization
  • Locating
[1]          Pishvaee, M.S., & Rabbani, M., (2011). A graph theoretic-based heuristic algorithm for responsive supply chain network design with direct and indirect shipment. Advances in Engineering Software, 42(3), 57-63.
[2]          Morganti, E., & Gonzalez-Feliu, J., (2015). City logistics for perishable products. The case of the Parma's Food Hub. Case Studies on Transport Policy, 3(2), 120-128.
[3]          Khodaparasti, S., Bruni, M.E., Beraldi, P., Maleki, H.R., & Jahedi, S., (2018). A multi-period location-allocation model for nursing home network planning under uncertainty. Operations Research for Health Care.
[4]          Kovačić, D., Hontoria, E., Ros-McDonnell, L., & Bogataj, M., (2015). Location and lead-time perturbations in multi-level assembly systems of perishable goods in Spanish baby food logistics. Central European journal of operations research, 23(3), 607-623.
[5]          Jalalifar, S., Rasi Ehtehsma, R., Mohtashami, A. (2021). Design a Fuzzy Goal Progr amming Model for Optimizing the Cost and Distance of Vehicles in the Four-Echelon Closed-Loop Supply Chain by Using Ant Colony Algorithm. Modern Researches in Decision Making, 6(1), pp.148-169.
[6]          Kodadaian, D., Radfar, R., Toloei, A. (2020). A Multi-Objective Green Supply Chain: Multi-Product Model Considering Uncertainty. Modern Researches in Decision Making, 5(3), 1-28.
[7]          Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming.                             Applied Mathematical Modelling, 36(8), 3433-3446.
[8]          Simchi-levi D. & Kaminsky,Ph.  (2006). Effects of supply chain management practices, integration and competition capability on performance,(11)3, 1359-8546
[9]          Dai, Z., Aqlan, F., Zheng, X., & Gao, K., (2018). A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints. Computers & Industrial Engineering.
[10]        Rafie-Majd, Z., Pasandideh, S.H.R., & Naderi, B., (2018). Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm. Computers & Chemical Engineering, 109, 9-22.
[11]        Li, L., Dababneh, F., & Zhao, J., (2018). Cost-effective supply chain for electric vehicle battery remanufacturing. Applied energy, 226, 277-286.
[12]        Saif-Eddine, A.S., El-Beheiry, M.M., & El-Kharbotly, A.K. (2019). An improved genetic algorithm for optimizing total supply chain cost in inventory location routing problem. Ain Shams Engineering Journal, 2019, 10(1), 63-76.
[13]        Oh, J., & Jeong, B. (2019). Tactical supply planning in smart manufacturing supply chain. Robotics and Computer-Integrated Manufacturing, 2019, 55, 217-233.
[14]        Pellegrino, R., Costantino, N., & Tauro, D., (2019). Supply Chain Finance: A supply chain-oriented perspective to mitigate commodity risk and pricing volatility. Journal of Purchasing and Supply Management, 2019, 25(2), 118-133.
[15]        Moretto, A., Grassi, L., Caniato, F., Giorgino, M., & Ronchi, S., (2019). Supply chain finance: From traditional to supply chain credit rating. Journal of Purchasing and Supply Management, 25(2), 197-217.
[16]        Cole, R., & Aitken, J., (2019). The role of intermediaries in establishing a sustainable supply chain. Journal of Purchasing and Supply Management, 26(2).
[17]        Reimann, M., Xiong, Y., & Zhou, Y., (2019). Managing a closed-loop supply chain with process innovation for remanufacturing. European Journal of Operational Research, 276(2), 510-518.
[18]        Asim, Z., Jalil, S.A., & Javaid, S., (2019). An uncertain model for integrated production-transportation closed-loop supply chain network with cost reliability. Sustainable Production and Consumption, 17, 298-310.
[19]        Sun, S., & Wang, X., (2019). Promoting traceability for food supply chain with certification. Journal of Cleaner Production, 217, 658-665.
[20]        Wang, X., Guo, H., Yan, R., & Wang, X., (2018). Achieving optimal performance of supply chain under cost information asymmetry. Applied Mathematical Modelling, 53, 523-539.
[21]        Wu, T., Zhang, L.G., & Ge, T., (2018). Managing financing risk in capacity investment under green supply chain competition. Technological Forecasting and Social Change, 143, 37-44.