توسعه سیستم خبره فازی به منظور ارزیابی عملکرد شعب بانک با استفاده از داده کاوی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت فناوری‌اطلاعات، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهر‌ان، ایران

2 استاد، گروه فناوری اطلاعات، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

3 استادیار، گروه مدیریت صنعتی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

چکیده

سیستم‌های خبره فازی از سیستم‌های هوشمندی هستند که بکارگیری آن‌ها می‌تواند منجر به حصول نتایج بهتری در ارزیابی عملکرد سیستم بانکی شود. هدف از پژوهش حاضر آن است تا با استفاده از متغیرهای فازی در کنار متغیرهای مالی به ارزیابی عملکرد شعب بانک‌ها پرداخت شود. در این پژوهش ابتدا با استفاده از پیاده سازی الگوریتم‌های داده کاوی بر روی داده‌های مالی شعب، به استخراج قوانین موجود در داده‌ها پرداخته شد و در گام بعدی با استفاده از قوانین موجود در داده‌های مالی و در کنار متغیرهای فازی به طراحی سیستم‌خبره فازی به منظور دستیابی به سیستمی که بتواند به طور جامع عملکرد شعب بانک را مورد بررسی قرار دهد پرداخته شده است. در طراحی سیستم‌خبره از نه متغیر فازی با عنوان مکان شعبه، وفاداری مشتریان، رضایت کارکنان، رضایت مشتری، خلاقیت و نوع آوری، ظاهر شعبه، ظاهر کاکنان، ثبات کارکنان و همچنین خروجی حاصل از نرخ‌های مالی استفاده گردیده است. به منظور استخراج قوانین موجود در داده‌های شعب از الگوریتم‌های درخت تصمیم و 0.5 c استفاده گردیده است و برای طراحی سیستم‌خبره فازی از سیستم استنتاج فازی متلب بهره گرفته شده است. نتایج حاصل از پژوهش نشان داد که با استفاده ازداده‌کاوی و سیستم‌های خبره فازی می‌توان دانش نهفته در داده‌های شعب را استخراج کرد و به صورت یک سیستم‌خبره جامع عملکرد شعب بانک را مورد ارزیابی قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Fuzzy expert system to evaluation of bank branch performance using datamining

نویسندگان [English]

  • Hamid Eslami Nosratabadi 1
  • Mohammad Jafar Tarokh 2
  • Alireza Poorebrahimi 3
1 PhD Student. Department of Information Technology Management. Science and Research Branch. Islamic Azad University. Tehran. Iran.
2 Professor. Department of Information Technology. k.n toosi university of Technology. Tehran. Iran.
3 Assistant Professor. Department of Industrial Management. Karaj Brach. Islamic Azad University. Karaj. Iran.
چکیده [English]

Fuzzy expert systems are intelligent systems which can be used to obtain better results in evaluating the performance of the banking system. The purpose of this study is to evaluate the performance of bank branches using fuzzy variables beside financial variables. In this study, firstly, the rules of the data were extracted by implementing data mining algorithms on the financial data of branches. In the next step, by obtained rules of financial data and along with fuzzy variables, a fuzzy expert system is designed in order to achieve a system that can comprehensively evaluate the bank branches performance. For designing the considered expert system, nine fuzzy variables such as branch location, customer loyalty, employee satisfaction, customer satisfaction, creativity and innovation, branch appearance, staff appearance, employee stability and also the output of financial rates have been used. Decision tree and C.5 algorithms have been used in order to extract the rules in the branch data. MATLAB fuzzy inference system has been used to design the fuzzy expert system also. The results of the research illustrated the hidden knowledge of the branch data can be extracted via data mining and the performance of bank branches can be evaluated as a comprehensive information system by fuzzy expert systems.

کلیدواژه‌ها [English]

  • performance evaluation
  • Data Mining
  • Fuzzy expert system
[1]          Dargahi, I, (2006), Evaluation and Strategy Selection Using Data Envelopment Analysis Technique, M.Sc. Thesis, Islamic Azad University, Qazvin Branch.
[2]          Nasri Nasrabadi, Sh., Hassanzadeh ,A. & Rajabzadeh Qatari, A., (2015), Designing a fuzzy information system to measure the quality of electronic banking services, Quarterly Journal of Modern Marketing Research, Fifth Year, First Issue, Serial Issue16 .
[3]          Fadaei, A., Alirezaei, A., Hashemzadeh Khorasgani, Gh., Fathi, H., (1399), Financial risk management in the automotive industry with fuzzy network analysis approach, Quarterly Journal of Financial Engineering and Securities Managemen, 12(47), pp. 331-344.
[4]          [4]Shabani Varnami, M., Didekhani, H., Khozin, A., Naderian, A., (1400), Designing a Credit Rating Evaluation Model for Islamic Securities with Adaptive Neural-Fuzzy Networks Approach, Quarterly Journal of Financial Engineering and Securities Management,12(46), pp. 198-234.
[5]          Eslami Nosratabadi, H., Tarokh, M., Poorebrahimi, A. (2021). 'Evaluation of Bank Branch Performance using Data mining and Expert System Approach', Quarterly Journal of Financial Engineering and Securities Managemen , 12(46), pp. 23-49
[6]          Adakh, E., fadaviasghari, A., Mohamad Pourzarandi, M. (2020). 'Presenting a Model Based on Evaluation of Performance Banks Listed in Tehran Stock Exchange Using Data Mining Approach', Quarterly Journal of Financial Engineering and Securities Management, 11(42), pp. 172-194.
[7]          Khatami, S, M., (2015), Review and Ranking of Bank Melli Performance Evaluation Indicators Using Balanced Scorecard Model and Fuzzy AHP with Emphasis on Financial Indicators, Management and Accounting Research Monthly, Issue 14, August Month.
[8]          Ahadzadeh Namin, M., Khamseh, E., Mohammadi, F., (1398), Evaluating the performance of bank branches using weight control approach in data envelopment analysis, Quarterly Journal of Financial Engineering and Securities Management, No. 42.
[9]          Iranzadeh, S., Barghi, A., (2009), Ranking and Evaluation of Bank Performance Using PCA Principal Component Analysis Technique, Case Study of Central Branches of Bank Sanat va Ma'dan Bank, Management Quarterly, Year 6, No. 14.
[10]        Liu, Hsiang‐Hsi, Jih‐Jeng, H., and Yung‐Ho, C., (2020), "Integration of network data envelopment analysis and decision‐making trial and evaluation laboratory for the performance evaluation of the financial holding companies in Taiwan." Managerial and Decision Economics 41, no. 1,64-78.
[11]        Cai, W., Fangming Xu, and Cheng, Z., (2016) "Geographical diversification and bank performance: Evidence from China." Economics Letters 147, 96-98.
[12]        Soleimani, B. Nemati, M. Almasi, H., (1399). Evaluating the performance of private banks in Tehran Stock Exchange based on CAMEL model, Quarterly Journal of Financial Economics, 144-115
[13]        Dejpasand, F., Amini, A., Ahmadi Kabir, M., (1398). Analysis of Factors Affecting Total Productivity: A Case Study of Selected Specialized and Commercial Public and Private Banks in Iran, Quarterly Journal of Financial Economics, 1382-153.
[14]        Khademi, S, R., Falihi, N., Dalmanpour, M., Naghi Lou, A., (1399). Investigating the Effects of Specific Banking and Macroeconomic Variables on Bank Profitability, Comparison of Neoclassical and Post-Keynesian Schools, Financial Economics Quarterly, 213-252
[15]        Nobahar E, Dehghan nayeri M, Rajabzadeh ghatari A. (2019), A Model on Iranian Banks Sustainability Assessment, Management Research in Iran, 23 (3) :161-187
[16]        Yousefi Ghaleh Roudkhani M A, Tehrani R, Mirlouhi S M.( 2021) Investigating the Impact of Financial performance metrics on Financial Stability of Banks in the Financial Crisis. Management Research in Iran. 25 (2) :1-21
[17]        Hosseinzadeh Saljooghi, F., Zaker Harofte, E. (2021). 'Evaluation of cost-effectiveness and cost efficiency of network systems Case study: Bank branches', Modern Research in Decision Making, 6(1), pp. 22-42.
[18]        Taghavifard, M., Habibi, R., Aghaei, M. (2018). 'Determining Retention and Profitability of Bank Customers Using Extended Decision Tree and Forest Regression', Modern Research in Decision Making, 2(4), pp. 57-79.
[19]        Taghizadeh H., Soltani Gh., (2011), A model based on fuzzy expert system for measuring organizational knowledge management. Iran Institute of Information Science and Technology, 1 (27), pp. 142-123.