بهینه سازی سبد سهام با رویکرد ترکیبی روش‌های تحلیل تکنیکال و داده کاوی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

2 دانشجوی کارشناسی ارشد، گروه مهندسی فناوری اطلاعات، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران

چکیده

سرمایه‌گذاری در بورس اوراق بهادار، بخش مهمی از اقتصاد کشور را تشکیل می‌دهد. افزایش سود و کاهش ریسک سرمایه‌گذاری در بورس همیشه مهم‌ترین دغدغه سرمایه‌گذاران بوده است. همچنین بازارهای بورس نه تنها از پارامترهای کلان بلکه از هزاران عامل دیگر نیز متأثر می‌شوند. این تحقیق به دنبال ارائه مدلی است که در آن پتانسیل آتی سهام با در نظر گرفتن شاخص‌های تحلیل تکنیکال به‌وسیله شبکه عصبی فازی پیش‌بینی می‌شود و بر‌اساس پیش‌بینی‌های به دست آمده، مدل ریاضی بهینه‌سازی بر مبنای عواملی چون میانگین، واریانس و چولگی سبد سهام ارائه می‌شود. سپس، این مدل با استفاده از الگوریتم ژنتیک حل می‌شود. تحقیق حاضر از بعد هدف از نوع تحقیقات کاربردی و از بعد روش، از نوع توصیفی است. نتایج تحقیق بیانگر آن است که مدل ارائه شده در این مقاله، در مقایسه با روش‌های سنتی و شاخص بازار، بازدهی بیشتری را با توجه به واریانس و چولگی برای سرمایه‌گذاران فراهم می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

A Hybrid Approach to Portfolio Optimization Using Technical Analysis and Data Mining

نویسندگان [English]

  • Amir Afsar 1
  • Fatemeh Helyel 2
1 Assistant professor, Management and Economics Faculty, Tarbiat Modares University, Tehran, Iran
2 MS. student, Engineering Faculty, University of Qom, Qom, Iran
چکیده [English]

Investing in the stock market, is a significant part of the country's economy. Increasing profits and reducing the risk of investing in the stock exchange has always been a major concern for investors. Also, Stock markets are affected not only by macroeconomic parameters but also by thousands of other factors. This research aims to provide a model in which future stock potential is forecasted by considering the technical analysis indicators by the fuzzy neural network. According to the forecasts, the mathematical model based on factors such as the return, variance, and skewness of the stock portfolio will be optimized. Then, this model is solved using the genetic algorithm. This research is an applied research in terms of purpose and is descriptive in terms of method. The empirical results shows that the proposed models will provide more profit to investors regarding variance and skewness comparing to traditional models and stock market index.

کلیدواژه‌ها [English]

  • Portfolio Optimization
  • Technical analysis
  • Data Mining

[1]      Markowitz H. (1952) "Portfolio Selection", The Journal of Finance, 7, 1, pp. 77-91.

[2]      Samuelson P. A. (1970) "The fundamental approximation theorem of portfolio analysis in terms of means, variances, and higher moments". Review of Economic Studies, 37, 4 : 537–542.

[3]      Zamani M., Afsar A., Saghafi S. V., Bayat, E. (2014) "Stock price forecasting expert system and portfolio optimization using fuzzy neural network, fuzzy modeling, and genetic algorithm", Financial Engineering and Stock Management, Vol. 6, No. 21, pp. 107-130.

[4]      Gudarzi M., Yakideh K., Mahfuzi G. (2016) "Portfolio optimization by combining data envelopment analysis and decision-making Hurwicz method", Modern Researches in Decision Making, Vol. 1, No. 4, pp.b 143-165.

[5]      Azar A., Afsar A., Ahmadi P. (2006) "A comparative study on the classical and artifitial intelligence methods in stock price index forecasting and hybrid modeling", Management Researches in Iran, Vol. 10, No. 49, pp. 1-16.

[6]      Huang X. (2007) "Two new models for portfolio selection with stochastic returns taking fuzzy information", European Journal of Operational Research, 180, 1, pp. 396-405.

[7]      Huang X. (2008) "Portfolio selection with a new definition of risk", European Journal of Operational Research, 186, 1, pp. 351-357.

[8]      Lin P., Ko, P. (2009) "Portfolio value-at-risk forecasting with GA-based extreme value theory", Expert Systems with Applications, 36, 2, pp.s 2503-2512.

[9]      Chang T., Yang S., "Chang, Kuang-Jung, portfolio optimization problems in different risk measures using genetic algorithm", Expert Systems with Applications, 36, 7, pp. 10529-10537.

[10]    Fu T., Chung, C., Chung F. (2013) "Adopting genetic algorithms for technical analysis and portfolio management",Computers & Mathematics with Applications, 66, 10, pp. 1743–1757.

[11]   Majhi B., Anish C.M. (2015) "Multiobjective optimization based adaptive models with fuzzy decision making for stock market forecasting", Neurocomputing, Vol. 167, 1, pp. 502–511.

[12]    Raei R., Mohammadi S., Ali Beygi Hedayat (2011) Mean-semivariance portfolio optimization using harmony search method", Management Researches in Iran, Vol. 15, No. 3, pp. 105-128.

[13]    Abbasi Juinani R. (2011) "Mean-variance-skewness model in portfolio optimization using fuzzy logic and genetic algorithm", Master Theses, Univesity of Qom.

[14]    Tehrani R., Modares A., Tahriri A. (2010) "Investigation of Technical analysis indexes on stockholder return", Economics Researches, No. 92, pp. 23-46.

[15]   Meyers T. (2011) The technical analysis course: Learn how to forecast and time the market, McGraw-Hill Education.

[16]   Hashemi O. (2008) Cell phone selection modeling by consumer using neural network, Master theses, Univesity of Tehran, Qom Camps.

[17]    Shahidi Shadkam S. A. (2008) A model for stock price forecasting in stock exchange using fuzzy neural network, Master theses, Univesity of Tehran, Qom Camps.

[18]    Kartalopoulos S. V. (1995) Understanding neural networks and fuzzy logic: Basic concepts and applications, Wiley-IEEE Press,.

[19]   Faraji Davar A. (2007) "Introduction to advanced computing methods in science and technology 2: artificial neural networks", Science and Technology, No. 90, pp. 72-73.

[20]    Priddy K., Keller P. (2005) Artificial Neural Networks: An Introdudtion, New York: SPOIL.

[21]    Sadeghi Mogadam M. R., Afsar A., Sohrabi B. (2006) "Supply chain material flow modeling using genetic algorithm", Management Researches in Iran, Vol. 10, No.46, pp. 212-226.