مدلسازی ریاضی عوامل انسانی در سیستم با محدودیت دوگانه

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار، گروه مدیریت، دانشکده مدیریت و حسابداری، دانشگاه پیام نور، تهران، ایران

چکیده

پژوهش حاضر با هدف به‌کارگیری مهندسی عوامل انسانی در سیستم‌های با محدودیت دوگانه به مطالعه و مدلسازی عوامل انسانی مهم در مسئله زمانبندی کارکنان پرداخته است. در مطالعات گذشته زمانبندی‌های شیفت کاری بیشتر بر مبنای عوامل محدود‌کننده ماشین و برنامه‌ریزی تولید انجام می‌گرفت و در بهینه‌سازی سیستم‌های زمانبندی، عوامل انسانی کمتر مورد توجه قرار گرفته است. از این رو در این مقاله به مهندسی عوامل انسانی در برنامه‌ریزی و زمانبندی شیفت‌های کاری پرداخته شده است. عوامل انسانی مورد مطالعه عبارت از یادگیری، فراموشی، خستگی، استراحت و تابع هدف مدل ریاضی کمینه‌سازی نسبت تعداد کارکنان به کارایی آنان است. برای بررسی کارایی مدل ریاضی و بررسی تأثیر عوامل انسانی بر کارایی زمانبندی کارکنان، چهار سناریوی زمانبندی با مجموعه پارامترهای انسانی مختلف توسط مدل ریاضی حل و مورد تحلیل قرار گرفت. نتایج نشان داد که پارامترهای انسانی بر کارایی سیستم با محدودیت دوگانه تأثیر داشته و انتخاب سناریوی زمانبندی مناسب می‌تواند تا 20/0 کارایی کارکنان را افزایش دهد. همچنین با توجه به تأثیر پیچیده پارامترهای انسانی بر عملکرد سیستم، هر سازمان باید با توجه به پارامترهای انسانی مختص مشاغل خود زمانبندی شیفت‌های کاری را تعریف کند. با توجه به پارامترهای تعریف شده در این پژوهش، سناریو زمانبندی مبتنی بر یک زمان استراحت نسبت به سناریو زمانبندی با زمان‌های استراحت متعدد کاراتر است. همچنین در شرایط میانگین مقادیر مختلف پارامتر خستگی، کارایی سناریوهای مورد استفاده کارگاه‌های تولیدی کارایی بهتری نسبت به دو سناریوی دیگر دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Mathematical Modeling of Human Factors in Dual Resourced Constraint System

نویسنده [English]

  • mohammad akbari
Assistant professor, management and accounting faculty, Payam-Noor University, Tehran, Iran
چکیده [English]

This research with goal of applying human factor engineering into the dual resource constraint system (DRC) studied and modeled significant human factors in staff scheduling problem. In previous studies more staff scheduling has been conducted based on machine constraints and production planning and less human factors has been considered in scheduling system optimizing. So, in this article human factor engineering was studied in shift scheduling and planning. Human factors which were modeled are learning, forgetting, fatigue and recovery by rest and objective function is minimizing ratio of number of employee on productivity. To study performance of mathematical model and examine effects of human factors on staff scheduling efficiency four scheduling scenarios with different human parameter sets were solved and analyzed. Results indicated that human parameters have impact on performance of dual resource constrained system and choosing good scheduling scenario can increase employees’ efficiency up to 20 percent. Also because of complicated impact of human parameters on system performance, any organization should define shift scheduling based on human parameters for their jobs. Regarding defined parameters in this article, scenario with one rest break time is more efficient compared to scenario with two or more rest break times. Also in average rate of fatigue, scenarios used by production workshops are more efficient compared to the other defined scenarios.

کلیدواژه‌ها [English]

  • staff scheduling
  • dual resource constraint system (DRC)
  • learning
  • forgetting
  • fatigue

[1]    Xu J., Xu X., Xie S.Q. (2011)" Recent developments in Dual Resource Constrained (DRC) system research"; European Journal of Operational Research, 215(2-1): 309-318.

[2]    Othman M., Gouw G. J., Bhuiyan N. (2012)" Workforce scheduling: A new model incorporating human factors"; Journal of Industrial Engineering and Management, 5(2): 259-284.

[3]    Treleven M. D. (1989) "A review of the dual resource constrained system research"; IEE Transactions, 21(3): 279–287.

[4]    Wilson J.R. (2000) "Fundamentals of ergonomics in theory and practice"; Applied Ergonomics, 31(6): 557-567.

[5]    Jaber M. Y., Kher H. V., Davis D. J. (2003) "Countering forgetting through training and deployment"; International Journal of Production Economics, 85(1): 33–46.

[6]    Kher H. V., Malhotra M. K., Philipoom P. R., Fry T. D. (1999) "Modeling simultaneous worker learning and forgetting in dual resource constrained systems"; European Journal of Operational Research, 115(1): 158–172.

[7]    Guastello S.J. (2006) Human factors engineering and ergonomics: A systems approach; Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.

[8]    Niebel B.W. (1958) Motion and time study: an introduction to methods, time study, and wage payment, RICHARD D. IRWIN, INC, HOMEWOOD, ILLINOIS.

[9]    Hagberg M., Silverstein B., Wells R., Smith M. J., Hendrick H. W., Carayon P., Pérusse M. (1995) Work related musculoskeletal disorders (WMSDs): A reference book for prevention, London: Taylor & Francis.

[10] Alexander D. C. (1998) "Strategies for cost justifying ergonomic improvements"; IIE Solutions, 30(3): 30–35.

[11] Carnahan B.J., Norman B.A., Redfern M.S. (2001) "Incorporating physical demand criteria into assembly line balancing"; IIE Transactions, 33(10): 875-887.

[12] Dorri B., Akbari M., Zandieh M. (2013) "Bi-objective shift and job rotation scheduling for multi-skilled workforces with human factor engineering approach"; Management Researches In Iran, 17(3): 1-21.

[13] Eiselt H.A., Marianov V. (2008)" Employee positioning and workload allocation"; Computers & Operations Research, 35: 513–524.

[14] Akbari M., Zandieh M., Dorri B. (2013) "Scheduling part-time and mixed-skilled workers to maximize employee satisfaction"; The International Journal of Advanced Manufacturing Technology, 64(5-8): 1017-1027.

[15] Ma L., Chablat D., Bennis F., Zhang W. (2009) "A new simple dynamic muscle fatigue model and its validation"; International Journal of Industrial Ergonomics, 39 (1): 211–220.

[16] Yue H. (2005) Worker flexibility in dual resource constrained (DRC) shops, University Library Groningen [Host].

[17] Zamiska J. R., Jaber M. Y., Kher H. V. (2007) "Worker deployment in dual resource constrained systems with a task-type factor"; European Journal of Operational Research, 177(3): 1507–1519.

[18] Kim S., Nembhard D. A. (2010) "Cross-trained staffing levels with heterogeneous learning/forgetting"; IEEE Transactions on Engineering Management, 57(4): 560–574.

[19] Guimarães L. M., Anzanello M. J., Renner J. S. (2012) "A learning curve-based method to implement multifunctional work teams in the Brazilian footwear sector"; Applied Ergonomics, 43(3): 541–547.

[20] Azizi N., Zolfaghari S., Liang M. (2010) "Modeling job rotation in manufacturing systems: The study of employee’s boredom and skill variations", International Journal of Production Economics, 123: 69–85.

[21] Aryanezhad M., Kheirkhah A., Deljoo V., Mirzapour Al-e-hashem S. (2009) "Designing safe job rotation schedules based upon workers’ skills"; The International Journal of Advanced Manufacturing Technology: 41(1–2), 193–199.

[22] Jaber M. Y., Neumann W. P. (2010) "Modelling worker fatigue and recovery in dual-resource constrained systems"; Computers and Industrial Engineering, 59(1): 75–84.

[23] Jaber M. Y., Givi Z. S., Neumann W. P. (2013) "Incorporating human fatigue and recovery into the learning–forgetting process"; Applied Mathematical Modelling, 37(12–13): 7287–7299.

[24] Givi Z.S., Jaber M.Y., Neumann W.P. (2015) "Production planning in DRC systems considering worker performance"; Computers & Industrial Engineering, 87(1): 317–327.

[25] Givi Z. S., Jaber M. Y., Neumann W.P. (2015) "Modelling worker reliability with learning and fatigue"; Applied Mathematical Modelling, 39(17): 5186–5199.

[26] Thomas B. G., Nembhard D. A., (2004) Preference based search approach for scheduling workers with learning and forgetting, Proc. MSOM Sponsored Session INFORMS Ann. Meeting, Oct.

[27] Nembhard D.A., Osothsilp N., (2005) "Learning and forgetting-based worker selection for tasks of varying complexity"; Journal of the Operational Research Society, 56(5): 576–587.

[28] Qin S., Liu S., Kuang H., (2016) "Piecewise linear model for multiskilled workforce scheduling problems considering learning effect and project quality"; Mathematical Problems in Engineering, Vol. 2016, Article ID 3728934, 11 pages.

[29] Sobhani A., Wahab M.I.M., Neumann W.P., (2015) "Investigating work-related ill health effects in optimizing the performance of manufacturing systems"; European Journal of Operational Research, 241(3): 708–718.

[30] Sobhani A., Wahab M.I.M., Neumann W.P., (2017) "Incorporating human factors-related performance variation in optimizing a serial system"; European Journal of Operational Research, 257 (1): 69–83

[31] Fritzsche L., Wegge J., Schmauder M., Kliegel M., Schmidt K.H., (2014) "Good ergonomics and team diversity reduce absenteeism and errors in car manufacturing"; Ergonomics, 57(2):148-61.