مدل‌سازی چندمرحله‌ای مسئله زنجیره تأمین سه سطحی غیرهمکارانه با در نظر گرفتن تخفیف در شرایط عدم قطعیت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

2 دانش‌آموخته کارشناسی ارشد، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

هدف مدیریت زنجیره تأمین، بهبود فعالیت‌‌های مختلف اجزا و سطوح یک زنجیره تأمین به‌منظور دستیابی به حداکثر سود ممکن است، اما دستیابی به این هدف با توجه به این نکته که بین اهداف اجزا و سطوح مختلف تضاد و تناقضات بسیاری مشاهده می‌‌شود، به‌صورت کامل امکان‌پذیر نخواهد بود و این تناقضات به‌مرورزمان به کاهش قدرت و رقابت‌‌پذیری منجر خواهد شد؛ ازجمله این تناقضات می‌‌توان به قیمت‌‌گذاری، موجودی و هزینه‌‌های مرتبط به اجزا و سطوح اشاره کرد. در این تحقیق، مسئله زنجیره تأمین سه سطحی با استفاده از رویکرد نظریه بازی‌ها و در نظر گرفتن وابستگی تقاضا به قیمت فروش و هزینه بازاریابی فازی، به‌صورت تخفیف کلی موردبررسی قرار گرفته است. مسئله با فرض عدم همکاری بین سطوح گوناگون و بازی استاکلبرگ که در آن هر یک از سطوح با توجه به شرایط بازار می‌‌توانند نقش رهبر را داشته باشند، مدل شده است. اهداف مسئله شامل تعیین بهترین تصمیم هر یک از بازیکنان برای تعیین مقدار سفارش بهینه و کمبود برای تولید‌‌کننده و قیمت فروش هر بازیکن با توجه به کمبود، تخفیف و هزینه‌‌‌های نگهداری، خرید و بازاریابی برای دستیابی به حداکثر درآمد، حداقل هزینه‌‌‌‎‎‌‌ها و درمجموع آن، حداکثر سود ممکن برای کل بازیکنان شرکت‌کننده در زنجیره است. برای حل مدل از نرم‌‌افزار گمز و الگوریتم‌های فرا ابتکاری استفاده شده و نهایتاً با تولید مثال‌های مختلف، سود اعضای زنجیره در شرایط مختلف رهبری موردبررسی و تجزیه‌وتحلیل قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Multi-stage modeling for non-cooperative multi-echelon supply chain management problem with discount under uncertainty

نویسندگان [English]

  • Javad Behnamian 1
  • Mohammad Mahdi Bashar 2
1 Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
2 Msc, Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

The goal of supply chain management is to enhance various functions of different parts and levels of a supply chain to obtain the maximum possible profit. But this goal is not completely achievable due to the fact that there are differences between mentioned parts and levels, in their attitude towards the goals. These differences, for example pricing, stocking, and the costs related to parts and levels, will gradually result in a deduction in strength and competitiveness in system. In this study, multi-echelon supply chain has been investigated using game theory approach and considering the dependence of demand to selling price, fuzzy marketing costs, and discounts for all units. The problem has been modeled assuming that there’s no cooperation between different levels. Also, Stackelberg model assumptions have been taken into account, in which each level, with respect to market conditions, can undertake the leadership task. The aim of this problem is to determine the best decision of each player to obtain the optimal order quantity, a shortage for manufacturer and the selling price of each player, and to maximize incomes, to minimize costs and in general, to maximize possible profit for all players participating in the chain. GAMS softwares and metaheuristic algorithms have been used to solve the problem. Finally, the profit for supply chain members’ in different leadership conditions have been analyzed by generating different examples.

کلیدواژه‌ها [English]

  • supply chain
  • Game Theory
  • Stackelberg
  • Metaheuristic algorithm
  • Selling price

[1] Amoozad Mahdiraji, H., Jaafarnejad, A., Moddares Yazdi, M., & Mohaghar, A. (2014). Cooperation modeling for unlimited three echelon supply chain: Game theory approach, Management Research in Iran, 18(1), 171-191. (in Persian).

[2] Akbarfakhrabadi, H.R., Gheidar-Kheljani, J., & Ghodsypour, S.H. (2016). Competition modeling in coordinating a three level supply chain, Modern Research in Decision Making, 1(3), 1-22. (in Persian).

[3] Notash, M., Zandieh, M., & Dorri Nokorani, B. (2015). Using a genetic algorithm approach for designing multi-objective supply chain network, Management Research in Iran, 18(4), 183-203. (in Persian).

[4] Cai, G. G., Chiang, W. C., & Chen, X. (2011).Game theoretic pricing and ordering decisions with partial lost sales in two-stage supply chains.International Journal of Production Economics, 130(2), 175-185.

[5] Aust, G., & Buscher, U. (2012). Vertical cooperative advertising and pricing decisions in a manufacturer–retailer supply chain: A game-theoretic approach.European Journal of Operational Research, 223(2), 473-482.

[6]  Zhao, J., & Wei, J. (2014). The coordinating contracts for a fuzzy supply chain with effort and price dependent demand. Applied Mathematical Modelling,38, 2476-2489.

[7] Khouja, M. (2003). Optimizing inventory decisions in a multi-stage multi-customer supply chain. Transportation Research Part E: Logistics and Transportation Review, 39(3), 193-208.

[8] Jaber, M. Y., Osman, I. H., & Guiffrida, A. L. (2006). Coordinating a three-level supply chain with price discounts, price dependent demand, and profit sharing.International Journal of Integrated Supply Management, 2(1), 28-48.

[9] Jaber, M. Y., & Goyal, S. K. (2008). Coordinating a three-level supply chain with multiple suppliers, a vendor and multiple buyers. International Journal of Production Economics, 116(1), 95-103.

[10] Yu, Y., & Huang, G. Q. (2010). Nash game model for optimizing market strategies, configuration of platform products in a Vendor Managed Inventory (VMI) supply chain for a product family. European Journal of Operational Research, 206, 361-373.

[11] Huang, Y., Huang, G. Q., & Newman, S. T. (2011). Coordinating pricing and inventory decisions in a multi-level supply chain: A game-theoretic approach.Transportation Research Part E: Logistics and Transportation Review, 47(2), 115-129.

[12] Sinha, A., Malo, P., Frantsev, A., & Deb, K. (2014). Finding optimal strategies in a multi-period multi-leader–follower Stackelberg game using an evolutionary algorithm. Computers & Operations Research, 41, 374-385.

[13] Esmaeili, M., Aryanezhad, M. B., & Zeephongsekul, P. (2009)49. A game theory approach in seller–buyer supply chain. European Journal of Operational Research, 195(2), 442-448.