به‌کارگیری روش هزینه‌‌‌یابی مبتنی بر فعالیت زمان‌‌‌مبنا به‌منظور رتبه‌بندی مشتریان سودآور

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه مدیریت، دانشکده علوم اداری و اقتصاد، دانشگاه اصفهان، اصفهان، ایران

2 دکتری مدیریت فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران

3 کارشناسی ارشدمهندسی فناوری اطلاعات-تجارت الکترونیک

چکیده

درک سودآوری مشتری و حفظ مشتریان سودآور، هسته اصلی فعالیت‌های مدیریت ارتباط با مشتری و بخش مهمی از رشد یک کسب‌و‌کار موفق است؛ بنابراین، هدف از انجام این تحقیق ارائه چارچوبی برای اندازه‌گیری سودآوری مشتریان، بخش‌بندی آن‌ها بر مبنای ارزشی که برای سازمان دارند و رتبه‌بندی آن‌ها بر اساس اولویت‌های حفظ مشتری در سازمان است. بدین منظور از تحلیل سودآوری مشتری بر مبنای هزینه‌یابی مبتنی بر فعالیت زمان‌مبنا برای محاسبه سودآوری مشتریان و از الگوریتم k-Means برای خوشه‌بندی مشتریان بر اساس RFM اصلاح‌شده استفاده شد. تحقیق حاضر یک مطالعه موردی است که در یکی از مجموعه رستوران‌های برگر زغالی (شعبه ظفر) از ابتدای آذرماه 1393 تا پایان اردیبهشت‌ماه‌ 1394 انجام شده است. بر اساس نتایج تحقیق، نگاشت خوشه‌های مشتریان به‌منظور درک بهتر رفتار مشتریان و رتبه‌بندی آن‌ها، در چهار طبقه مفهومی دسته‌‌‌بندی شد. خوشه‌های مشتریان براساس عناوین «وفادار امروز»، «مشتریان رقبا»، «وفادار فردا» و «آماده پذیرش پیشنهاد رقبا» نگاشته و برچسب‌گذاری شد.

کلیدواژه‌ها


عنوان مقاله [English]

Applying Time-Driven Activity-Based Costing (TDABC) for customer Profitability ranking

نویسندگان [English]

  • Saeed Jahanyan 1
  • Mahdi Mahmoudsalehi 2
  • Mahshid Hosseini 3
1 Assistant Professor, Faculty of Administrative Sciences & Economics, University of Isfahan, Isfahan, Iran
2 PhD. of Information Technology Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran
3 MSc of Information Technology Engineer-Electronic Commerce
چکیده [English]

The quantification of customer profitability and the retaining the profitable customers are the core of the customer relationship management activities and a critical part of growing a successful business. This research aims to provide a framework for measuring and evaluating customer profitability, categorizing them based on their value to the business and ranking them according to priorities of customer retention in the business. We implement a customer profitability analysis using time driven activity-based costing and the k-Means algorithm for clustering customers based on the modified RFM method. Finally, in order to quantify the customer behavior and ranking them, we map customer clusters into four conceptual categories. This research is a case study of the Charcoal Burger Restaurant Franchise in the Zafar Street Branch from Early December 2014 until the end of May 2015. Customer’s clusters include of today's loyal customers, customers of competitors, loyal for tomorrow and ready to offer competitors.
 

کلیدواژه‌ها [English]

  • Customer Retention
  • Customer Profitability Analysis
  • Time-Driven Activity Based Costing
  • RFM Model
  • k-Means Algorithm

[1]         Ang, L., & Buttle, F, “Customer retention management processes: A quantitative study”, European Journal of Marketing, 40(1/2), 83-99, 2006.

[2]         Reichheld, F.P., & Sasser, W.E., “Zero defections: Quality comes to services”, Harvard business review, 68(5), 105-111, 1990.

[3]         Hwang, H., Jung, T., & Suh, E., “An LTV model and customer segmentation based on customer value: a case study on the wireless telecommunication industry”, Expert systems with applications, 26(2), 181-188, 2004.

[4]         Tinabo, R., “Decision Tree Technique for Customer Retention in Retail Sector”, in Integrated Computing Technology, 123-131, 2011.

[5]         Rhondalynn, “Marketing budgets: How much should I spend to retain existing customers?”, YFS Magazine, June 2013, Retrieved from http://yfsmagazine.com.

[6]         Weinstein, A., “Customer retention: a usage segmentation and customer value approach”, Journal of Targeting, Measurement and Analysis for Marketing, 10(3), 259-268, 2002.

[7]         Zhang, G., “Customer Retention Based on BP ANN and Survival Analysis”, in Wireless Communications, Networking and Mobile Computing, International Conference on IEEE, 2007.

[8]         Jafari Momtaz, N., Alizadeh, S., & Sharif Vaghefi, M., “A new model for assessment fast food customer behavior case study: An Iranian fast-food restaurant British Food Journal, 115(4), 601-613, 2013.

[9]         Buttle, F., & Burton, J., “Does service failure influence customer loyalty?” Journal of Consumer Behaviour, 1(3), 217-227, 2002.

[10]      Cheng, C.-H., & Chen, Y.-S. X, Classifying the segmentation of customer value via RFM model and RS theory. Expert systems with applications, 36(3), 4176-4184, 2002.

[11]      Ngai, E.W., Xiu, L., & Chau, D.C., “Application of data mining techniques in customer relationship management: A literature review and classification Expert systems with applications, 36(2), 2592-2602, 2009.

[12]      Arnold, T.J., Fang, E.E., & Palmatier, R.W., “The effects of customer acquisition and retention orientations on a firm’s radical and incremental innovation performance” Journal of the Academy of Marketing Science, 39(2), 234-251, 2011.

[13]      Nwankwo, S.I., & Ajemunigbohun, S.S., Customer Relationship Management and Customer Retention: Empirical Assessment from Nigeria’s Insurance Industry. Business and Economics Journal, 4(2), 2013, open access journal, DOI: 10.4172/2151-6219.1000081.

[14]      Holm, M., Kumar, V., & Rohde, C., “Measuring customer profitability in complex environments: an interdisciplinary contingency framework”, Journal of the Academy of Marketing Science, 40(3), 387-401, 2012.

[15]      Wei Z. (2011) “A Study on the Customer Profitability Analysis Using Activity-Based Costing”, In: Jiang L. (eds) Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering (ICCE2011), November 19-20, 2011, Melbourne, Australia, Advances in Intelligent and Soft Computing, vol 110, pp.63-68, Springer, Berlin, Heidelberg.

[16]      Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S., “Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study”, Procedia Computer Science, 3, 57-63, 2011.

[17]      Kaplan, R., & Anderson, S.R., “Time-driven activity-based costing: a simpler and more powerful path to higher profits”, Harvard Business School Press, Boston, 2011.

[18]      Blocher, E., Cokins, G., & Stout, D., “Cost Management: A Strategic Emphasis” McGraw-Hill, Irwin, 2009.

[19]      Kaplan, R., & Anderson, S.R., “Time-driven activity-based costing Harvard business review, 82(11), 131-140, 2004.

[20]      Everaert, P., Bruggeman, W., Sarens, G., Anderson, S.R., & Levant, Y., “Cost modeling in logistics using time-driven ABC: Experiences from a wholesaler”, International Journal of Physical Distribution & Logistics Management, 38(3), 172-191, 2008.

[21]      Dalci, I., Tanis, V., & Kosan, L., “Customer profitability analysis with time-driven activity-based costing: a case study in a hotel”, International Journal of Contemporary Hospitality Management, 22(5), 609-637, 2010.

[22]      Khalifesoltani, S. Ahmad and Mirzaei Kalani, Maghsoud, “Time Driven Activity Based Costing model”, Studies of Accounting and Auditing, 1(3), 32-47, 2012.

[23]      Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., Ravishanker, N., & Sriram, S., “Modeling customer lifetime value”, Journal of Service Research, 9(2), 139-155, 2006.

[24]      Khajvand, M., & Tarokh, M.J., “Estimating customer future value of different customer segments based on adapted RFM model in retail banking context”, Procedia Computer Science, 3, 1327-1332, 2011.

[25]      Bin, D., Peiji, S., & Dan, Z., “Data mining for needy students identify based on improved RFM model: A case study of university” in Information Management, Innovation Management and Industrial Engineering, pp. 244-247,2008.

[26]      Tsai, C.-Y., & Chiu, C.-C., “A purchase-based market segmentation methodology”, Expert Systems with Applications, 27(2), 265-276, 2004.

[27]      Van Raaij, E.M., Vernooij, M.J.,  & van Triest, S., “The implementation of customer profitability analysis: A case study”, Industrial Marketing Management, 32(7), 573-583, 2003.

[28]      Stouthuysen, K., Swiggers, M., Reheul, A.-M., & Roodhooft, F., “Time-driven activity-based costing for a library acquisition process: A case study in a Belgian University Library Collections, Acquisitions, and Technical Services, 34(2), 83-91, 2010.

[29]      Everaert, P., Cleuren, G., & Hoozée, S., “Using Time-Driven ABC to identify operational improvements: a case study in a university restaurant”, Journal of Cost Management, 26(2), 41-48, 2012.

[30]      van Raaij, E.M., “The strategic value of customer profitability analysis”, Marketing Intelligence & Planning, 23(4), 372-381, 2005.

[31]      Demeere, N., Stouthuysen, K., & Roodhooft, F., “Time-driven activity-based costing in an outpatient clinic environment: Development, relevance and managerial impact”, Health policy, 92(2), 296-304, 2009.

[32]      Kafashpour, A., Tavakoli, A., Alizadeh, A., “Customer Segmentation According to Customer Life Time Value Using Data Mining Based on RFM Model”, Journal of public management, 5(15), 63-84, 2012. [In Persian]

[33]      Ghasemnia Arabi, Narjes, Safaei Ghadikolaei, Abdolhamid, “A New Approach of applying multi criteria decision making models for classifying the credit customers of bank”, Modern researches in decision making, 1(3), 43-64, 2016. [In Persian]