روشی برای حل مسائل تصمیم‌گیری چندمعیاره با تعریف نو از اندازه‌های باور در نظریه دمپستر شافر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده علوم پایه، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد، دانشکده علوم ریاضی و کامپیوتر، دانشگاه خوارزمی، تهران، ایران

3 استاد، دانشکده مهندسی صنایع، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

4 استادیار، گروه مهندسی صنایع، واحد رباط‌کریم، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

تابع تشخیص یا تابع جرم احتمال، نقش مهمی را در نظریه دمپستر‌شافر ایفا می‌کند. بر اساس این تابع، می‌توان اندازه‌های باور و امکان را برای بیان اطلاعات ناسازگار، متناقض، ناکافی و نامطمئن به دست آورد. معمولاً این اندازه‌ها توسط چندین کارشناس ارائه شده و قابل‌اندازه‌گیری با مقادیر دقیق احتمالی نیستند. در این مقاله، روش تصمیم‌گیری جدیدی برای حل مسائل چندمعیاره، بر اساس تابع تشخیص و اندازه‌های باور، پیشنهاد شده است. سه عنصر اصلی در نظر گرفته‌شده در تابع تشخیص شامل 1- درجه یا اندازه باور از درستی، 2- اندازه عدم باور از نادرستی گزینه و 3- میزان یا درجه عدم قطعیت باور درباره گزینه موردنظر در مجموعه کل گزینه‌ها است. در روش پیشنهادی، فاصله بین اندازه‌های باور توسط کارشناسان متعدد بیان شده و فاصله آن تا حالت ایده­آل، با استفاده از عملگرهای بیشینه و کمینه محاسبه می‌شود. از فاصله به‌دست‌آمده می‌توان به‌عنوان اندازه بهینه بین هر گزینه و گزینه ایده­آل به منظور رتبه‌بندی و انتخاب مطلوب‌ترین گزینه استفاده کرد. در این روش، وزن معیارها و وزن سه عنصر تعریف‌شده تابع تشخیص در فرآیند تصمیم‌گیری موردتوجه قرار می­گیرد. در انتها نیز دو مثال کاربردی برای روش پیشنهادی ارائه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

A Multi-Criteria Decision Making Method Based On New Definition of Belief Function in Dempster Shafer Theory

نویسندگان [English]

  • Fereshteh Khalaj 1
  • einollah pasha 2
  • Reza Tavakkoli-Moghaddam 3
  • Mehran Khalaj 4
1 PhD student, Department of Statistics, Science and Research branch, Islamic Azad University, Tehran, Iran.
2 Professor, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran.
3 Professor, School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
4 Assistant Professor, Department of Industrial Engineering, Robat Karim Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Basic probability assignment or mass function is an important tool in Dempster-Shafer theory. Based on this function, belief and plausibility functions are used to present insufficient, inconsistencies or conflict information. Generally, the information source is based on expert’s opinions when the deterministic probability of any proposition may not be obtained. In this paper, a new method for solving multi-criteria decision-making is proposed based on belief functions. Three main elements are considered in the definition of the belief functions are: (1) the degree of the true belief or belief function, (2) the degree of the false belief or non-belief function (3) the degree of uncertainty for each alternative among alternatives. In the proposed method, the amount of different distance between an alternative and the ideal alternative can be measured based on the minimum and maximum operators. It may help to utilize the belief measure between the ideal alternative and each alternative to rank the alternatives with respect to measure the value and then select the desirable one. Furthermore, in the proposed method, the weighted criteria and weighted belief function are considered in the decision-making process. Finally, two illustrative examples are given to demonstrate its application effectiveness.

کلیدواژه‌ها [English]

  • Dempster Shafer theory
  • belief function
  • Multi-criteria decision-making
[1]         Dempster AP. Upper and lower probabilities introduced by multivalued mappings. Annals of the institute of statistical mathematics 1967; 38(2): 325-339.

[2]         Shafer G. A mathematical theory of evidence. Princeton University Press, Princeton, 1976.

[3]         Wu W, Zhang M, Li H, Mi J. Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Information Sciences 2005; 174(3): 143-164.

[4]         Yang B, Kim KJ. Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals. Mechanical Systems and Signal Processing 2006; 20(2): 403-420.

[5]         Liu Y, Jiang Y, Liu X, Yang S. CSMC: a combination strategy for multi-class classification based on multiple association rules. Knowledge-Based Systems 2008; 21(8): 786-793.

[6]         Xiao Z, Yang X, Niu Q, Dong Y, Gong K, Xia S, Pang Y. A new evaluation method based on D-S generalized fuzzy soft sets and its application in medical diagnosis problem. Applied Mathematical Modelling 2012; 36(10): 4592-4604.

[7]         Li P, Li S. Interval-valued intuitionistic fuzzy numbers decision-making method based on grey incidence analysis and D–S theory of evidence, Acta Autom. Sin. 2011; 37: 993–998.

[8]         Wu D. Supplier selection in a fuzzy group setting: a method using grey related analysis and Dempster–Shafer theory, Expert Syst. Appl. 2009; 36: 8892–8899.

[9]         Verbert K, Babuška R, Schutter B. Bayesian and Dempster–Shafer reasoning for knowledge-based fault diagnosis – A comparative study. Engineering Applications of Artificial Intelligence 2017; 60: 136–150.

[10]      Walley P. Statistical reasoning with imprecise probabilities. Chapman and Hall, 1991.

[11]      Pearl J.. Probabilistic reasoning in intelligent systems: networks of plausible inference. San Francisco, CA: Morgan Kauffmann, 1988.

[12]      Zadeh L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1999; 100: 9–34.

[13]      Shafer, G. A mathematical theory of evidence. New Jersey: Princeton University Press, 1976.

[14]      Yager R.R, Kacprzyk J, Fedrizzi M. Advances in the Dempster–Shafer theory of evidence. John Wiley & Sons, Inc. 1994.

[18]      Toghyani A, Rajabzadeh A, Anvari Rostamy A. Designing of Decision Making Model in Uncertainty Conditions, Modern Researches in Decision Making 2016; 1(1):189-216.

[19]      Ghorbani Z, Tavakkoli-Moghaddam R, Vahdani B, Minaee M, Mousavi S.M. Solving an analysis network process model for selection of the dispatching rules by an interval-valued intuitionistic fuzzy set, Management Researches in Iran (Modares Human Sciences)   2014; 18(2):195-214.

[20]      Wang X, Zhu J, Song Y, Lei L. Combination of unreliable evidence sources in intuitionistic fuzzy MCDM framework. Knowledge-Based Systems 2016; 97: 24–39.

[21]      Razavi Hajiagha S.H, Hashemi S.S, Mohammadi Y, Zavadskas E.K. Fuzzy belief structure based VIKOR method: an application for ranking delay causes of Tehran metro system by FMEA criteria. Transport 2016; 31: 108-118.

[22]      Zhou H, Wang J.Q, Zhang H.Y, Chen X.H. Linguistic hesitant fuzzy multi-criteria decision-making method based on evidential reasoning. International Journal of Systems Science 2016; 47: 314-327.

[23]      Yang J.-B. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. European Journal of Operational Research 2001;  131: 31–61.

[24]      Yang J-B, Sen P. A general multi-level evaluation process for hybrid MADM with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics 1994; 24:1458–1473.

[25]      Kabak, O, Ruan D. A comparison study of fuzzy MADM methods in nuclear safeguards evaluation. Journal of Global Optimization 2011; 51: 209–226.

[26]      Kabak O, Ruan D. A cumulative belief degree-based approach for missing values in nuclear safeguards evaluation. IEEE Transactions on Knowledge and Data Engineering 2011; 23: 1441–1454.

[27]      Zadeh L.A. Fuzzy sets. Information and Control 1965; 8: 338–353.

[28]      Atanassov K.T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986; 20: 87–96.