مدل‌سازی زمان‌بندی و اندازه انباشته اقتصادی در جریان کارگاهی جایگشتی توزیع‌شده با کارخانه‌های متفاوت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

2 دانشیار، گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

چکیده

این مقاله مدل جدید زمانبندی و اندازه انباشته اقتصادی در جریان کارگاهی جایگشتی توزیع شده با چندین کارخانه و ماشین متفاوت را نشان می‌دهد که تا کنون این موضوع مدنظر قرار نگرفته است. بدین منظور، محصولات متفاوت باید در بین کارخانه‌ها توزیع شود و سپس توالی محصولات تخصیصی به هر کارخانه نیز مشخص شود. هدف مسئله، حداقل کردن مجموع هزینه‌های راه اندازی، موجودی در جریان و موجودی محصول نهایی در واحد زمان و هزینه کل تولید شامل هزینه تخصیص نامتوازن محصولات بین کارخانه‌ها است. از آنجایی که مدل مذکور NP-hard است از الگوریتم ترکیبی بهینه‌سازی میرایی ارتعاش (VDO) با الگوریتم‌های رقابت امپریالیستی (ICA) و شبیه‌سازی تبرید (SA) با نام (HVDO) و همچنین از الگوریتم ژنتیک (GA) و VDO برای مقایسه استفاده شده است. برای تعیین بهترین مقادیر پارامترهای هر یک از الگوریتم‌ها که منجر به بهترین جواب می‌شود، روش رویه پاسخ (RSM) بکاربرده شده است. بمنظور بدست آورن جواب بهینه و مقایسه آن با مدل غیرخطی، از روش خطی‌سازی استفاده کرده و سپس مدل خطی با نرم افزار لینگو حل شده است. نتایج نشان می‌دهد که HVDO عملکرد بهتری در بدست آوردن حداقل تابع هدف در این مسئله دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of Scheduling and Economic Lot Sizing In Distributed Permutation Flow Shops with Non-Identical Multi Factory

نویسندگان [English]

  • mohammad alaghebandha 1
  • bahman naderi 2
  • mohammad mohammadi 2
1 PhD. Student, Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
2 Associate Professor, Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
چکیده [English]

This paper addresses a new mathematical model of economic lot sizing and scheduling problem in distributed permutation flow shop problem with a number of non-identical factories and machines that have not been considered in previous articles. For this purpose, different products must be distributed between the factories then assignment of products to factories and sequencing of the products assigned to each factory has to be derived. The objective is to minimize the sum of setup costs, work-in-process inventory costs, finished products inventory costs per unit of time and total production cost that consists of cost of unbalanced assignment of products between factories. Since the proposed model is NP-hard, an efficient hybrid Vibration Damping Optimization with Imperialist Competitive Algorithm and Simulated Annealing are considered to solve the model. In addition, Genetic Algorithm and VDO are used for comparison. In order to determine the best value of algorithms parameters that result in a better solution, a fine-tuning procedure according to Response Surface Methodology is executed. The results show that the HVDO has a better performance in achieving the minimum goal in this problem.

کلیدواژه‌ها [English]

  • Distributed permutation flow shops
  • Linearization
  • Vibration Damping Optimization
  • Imperialist Competitive Algorithm
  • Response surface methodology

[1]      Olfat, L. Total Tardiness Minimization in Flow Shop with Intermediate Due Dates, Journal of Modern Researches in Decision Making. Vol. 2 No. 3 (in Persian), 2017, pp. 25-47,

[2]      Naderi, B., Ruiz, R. The distributed permutation flowshop problem, Computers and Operations Research, 2009, Volume 37, Issue 4, pp 754-768, doi.10.1016/j.cor.2009.06. 019.

[3]      Ounniche, J, Boctor, F.F., Martel, A. The impact of sequencing decisions on multi-item lot sizing and scheduling in flow shops, International Journal of Production Research, 37(10), 1999, 2253–2270.

[4]      R. M’Hallah. Minimizing total earliness and tardiness on a permutation flow shop using VNS and MIP, Computers & Industrial Engineering, 2014, Volume 75, Pages 142-156. http://dx.doi.org/ 10.1016/j.cie.2014.06.011.

[5]      He, H. Minimization of maximum lateness in an m-machine permutation flow shop with a general exponential learning effect, Computers & Industrial Engineering, 2016, Volume 97, Pages 73-83, http://dx.doi.org/10.1016/j.cie. 2016.04.010

[6]      Li, X., Yin, M. A discrete artificial bee colony algorithm with composite mutation strategies for permutation flow shop scheduling problem, Scientia Iranica E, 2012, Volume 19,  pp.1921–1935, doi:10.1016/j. scient.2012.10.034

[7]      Behnamian, J., Fatemi Ghomi, S.M.T. The heterogeneous multi-factory production network scheduling with adaptive communication policy and parallel machine, Information Sciences, 219, 2013, 181–196.

[8]      G hafoori S. and M. taghizadeh yazdi, "Proposing a Multi- Objective Mathematical Model for RCPSP and Solving it with Firefly and Simulated Annealing algorithms," Journal of Modern Researches in Decision Making, vol. vol 1 no4 (in Persian), pp.117-142,2017.

[9]      Wang, S., Wang, L., Liu, M., Xu, Y. An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem, Int. J. Production Economics 145, 2013, 387–396. http://dx.doi.org/10.1016/j.ijpe. 2013.05.004

[10]   Naderi, B., Ruiz, R. A scatter search algorithm for the distributed permutation flowshop scheduling problem, European Journal of Operational Research, 2014, http://dx.doi.org/10. 1016/j.ejor.2014.05.024

[11]   Lin, J., Zhang. S. An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem, Computers & Industrial Engineering, Volume 97, Pages 128-136, 2016, http://dx.doi.org/ 10.1016/j.cie. 2016.05.005

[12]   Deng, J., Wang, L. A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem, Swarm and Evolutionary Computation, 2016, http://dx.doi. org/10.1016/j.swevo.2016.06.002

[13]   Rodriguez, M.A., Vecchietti, A.R., Harjunkoski, I., Grossmann, I.E. Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models, Computers and Chemical Engineering 62, 2014, 194–210.

[14]   You, F., Grossmann, I.E. Integrated Multi-Echelon Supply Chain Design with Inventories under Uncertainty: MINLP Models, Computational Strategies, Carnegie Mellon University, USA, 2008.

[15]   Pakzad-Moghaddam, S.H., Tavakkoli-Moghaddam, R., Mina, H. An approach for modeling a new single machine scheduling problem with deteriorating and learning effects, Computers & Industrial Engineering, 2014, http://dx.DOI.org/10.1016/j. cie.2014.09.021.

[16]   Holland, J.H. Adaptive in Natural and Artificial Systems, Ann Arbor: University of Michigan Press, 1975.

[17]   Mehdizadeh, E., Tavakkoli-Moghaddam, R., Yazdani, M. A Vibration Damping Optimization Algorithm for a Parallel Machines Scheduling Problem with Sequence-independent Family Setup Times, Applied mathematical modeling, 2015, Volume 39, Issue 22, Pages 6845-6859, Doi: http://dx.doi.org/10.1016/j.apm. 2015.02.027 

[18]   Alaghebandha, M., Hajipour, V. A soft computing-based approach to optimise queuing inventory control problem. International Journal of Systems Science, 2013, DOI:10.1080/00207721.2013.809614.

[19]   Pasandideh, SHR., Akhavan Niaki, ST., Hajipour, V. A multi objective facility location model with batch arrivals: two parameter tuned meta heuristic algorithms, J Intell Manuf, 24, 2013, 331-348.

Choi, S.-W., Kim, Y.-D. Minimizing total tardiness on a two-machine re-entrantflowshop, Eur. J. Oper. Res. 199, 2009, 375–384.