مدل‌سازی اجماع در فرآیند روش دلفی با استفاده از مفهوم استدلال کیفی و کاربرد آن در شناسایی و بومی‌‌سازی معیارهای مؤثر در بهبود کیفیت خدمات

نوع مقاله: مقاله پژوهشی

نویسنده

گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه پیام نور، تهرا، ایران

چکیده

در سازمان‌های خدماتی، بهبود کیفیت خدمات جهت افزایش بهره‌‌وری، سود و رضایت مشتری یک موضوع حیاتی است که بدون شناسایی معیارهای مؤثر بر بهبود کیفیت خدمات، امکان‌پذیر نیست. بنابراین، هدف از این مقاله، معرفی یک روش دلفی بر اساس مفهوم استدلال کیفی، برای شناسایی و بومی‌سازی معیارهای مؤثر در کیفیت خدمات است. در این مقاله، ابتدا مفاهیم روش مرتبه بزرگی مطلق کیفی به‌ عنوان یکی از روش‌های استدلال کیفی، تشریح و بر اساس آن، یک ساختار منظم برای روش دلفی ارائه شد. در این روش، ابتدا با استفاده از مفهوم آنتروپی یک تابع اجماع در محیط استدلال کیفی، معرفی و سپس سازوکار لازم برای رسیدن به همگرایی در روش دلفی فراهم شد. پس از معرفی مدل مفهومی تحقیق، شناسایی و بومی‌سازی معیار‌های کیفیت خدمات در بخش حمل‌ونقل عمومی شهرکرد به‌عنوان یک مطالعه کاربردی از روش پیشنهادی ارائه شد. نتایج حاصل نشان داد که از میان 35 معیار اولیه که بر اساس تلفیق معیارهای موجود در مطالعات کتابخانه‌‌ای و نظر پنل خبره گردآوری شده بود، در نهایت 30 معیار به‌عنوان معیارهای مؤثر بر بهبود کیفیت خدمات حمل‌ونقل عمومی شهرکرد انتخاب شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Consensus modeling in Delphi's process using the concept of qualitative reasoning and its application in identification and localization effective criterions to improve the quality of services

نویسنده [English]

  • ali dehghani filabadi
Department of Industrial Engineering, Payme noor University, Tehran, Iran
چکیده [English]

In service organizations, improving service quality is critical for increasing productivity, profitability and customer satisfaction, and without identifying these criteria, improving service quality is not possible. Therefore, the aim of this paper is to introduce a Delphi method based on the concept of qualitative reasoning for identification and localization the effective criteria in the quality of services. Firstly, the concepts of the qualitative absolute order of magnitude method were described, and based it, a regular structure for the Delphi method was presented. In a qualitative reasoning environment, a consensus function by using the concept of entropy was introduced. Then, the mechanism for achieving convergence in the Delphi method was provided. According to the conceptual model offered by this research, identification and localization criteria for service quality of the public transportation in ShahreKurd city were investigated as a case study. The results showed that among the 35 initial criteria that were collected based on the combination of criteria in library studies and Expert Panel views, 30 criteria were selected as effective criteria to improve the service quality of Shahrekurd public transportation.

کلیدواژه‌ها [English]

  • Delphi method
  • qualitative reasoning
  • qualitative absolute order-of-magnitude
  • Service Quality
  • Public Transportation
[1] Parasuraman, A., Zeithaml, V. A. & Berry, L. L. (1988) “SERVQUAL: A multiple-item scale for measuring perceptions of service quality”, Journal of Retailing, 64(spring): 2–40.

[2] Esfahanipour, A. & Lavasani, T. (1390) “Using the TOPSIS approach to rank top urban transport scenarios”, Transportation Research Journal, 8(4): 323-342, (In Persian).

[3] Bilisik, O. N.¸ Erdog˘an, M., Kaya, I. & Barac¸L. B. (2013) “A hybrid fuzzy methodology to evaluate customer satisfaction in a public transportation system for Istanbul”, Total Quality Management, 24(10): 1141–1159.

[4] Chou, P. F., Lu, C. S. & Chang, Y. H. (2014) “Effects of service quality and customer satisfaction on customer loyalty in high-speed rail services in Taiwan”, Transportmetrica A: Transp. Sci, 10 (10): 917–945.

[5] Duleba, S., Mishina, T. & Shimazaki, Y. (2012) “A dynamic analysis on public bus transport’ssupply quality by using AHP”, Transport, 27(3): 268–275.

[6] Lazim,A.& Wahab, N. (2010) “A fuzzy Decision Making Approach in Evaluating Ferry Service Quality”, Management Reserch and Practice , 2 (1): 94-107.

[7] Lupo, T. (2015) “A fuzzy framework to evaluate service quality in the healthcare industry: An empirical case of public hospital service evaluation in Sicily”, Applied soft computing, 40: 468-478.

[8] Mahmoud, M. & Hine, J. (2016) “Measuring the influence of bus service quality on the perception of users”, Transportation Planning and Technology, 39 (3): 284–299.

[9] Rojo, M., dell’Olio, L., Gonzalo-Orden, H. & Ibeas, A. (2013) “Interurban bus service quality from the users’ viewpoint”, Transportation Planning and Technology, 36(7): 599–616.

[10] Şimşekoglu, Ö., Nordfjærn, T. & Rundmo, T.(2015) “The role of attitudes, transport priorities, and car use habit for travel mode use and intentions to use public transportation in an urban Norwegian public”, Transport Policy, 42: 113–120.

[11] Wu, H. C. & Cheng, C.C. (2013) “A hierarchical model of service quality in the airline industry”, Journal of Hospitality and Tourism Management, 20: 13-22.

[12] Sepahvand, R., Aref nejad, M. & Shariat Nejad, A. (1396) “Identification and Prioritization of Factors Causing Organizational Inertia Using Delphi Fuzzy Method”, Modern Researches in Decision Making, 2(1): 95-118, (In Persian).

[13] Alimohammadlu, M., Akbari, B. & Mahdavianpour, E. (1393) “Identifying Social Responsibility in Universities (USR) Using Fuzzy Delphi. Case study: Shiraz University”, Journal of Iranian Higher Education, 6 (3):161-192, (In Persian).

[14] Safari, A., Abbasi, F. & Golshahi, B. (2016) “Identifying key factors on marketing performance of pharmacy companies: The mediating role of ethic marketing”, Journal of Management Research in Iran, 19 (4): 95-116, (In Persian).

[15] Wang, J. Q., Wang, P., Wang, J. & Zhang, H.Y. (2015) “Atanassov’s interval-valued intuitionistic linguistic multicriteria group decision-making method based on the trapezium cloudmodel”, IEEE Transaction on Fuzzy Systems, 23 (3): 542–554.

[16] Agell, N., Sánchez, M, Roselló,L.& Prats, F. (2012) “Ranking multi-attribute alternatives on the basis of linguistic labels in group decisions”, Information Science, 209: 49–60.

[17] Massanet, S., Riera, J. V., Torrens, J. & Herrera-Viedma, E. (2014) “A new linguistic computational model based on discrete fuzzy numbers for computing with words”, Information Sciences, 258 (3): 277–290.

[18] Dutta, B. & Guha, D. (2015) “Partitioned Bonferroni mean based on linguistic 2-tuple for dealing with multi-attribute group decision making”, Applied Soft Computing, 37: 166–179.

[19] Herrera, F. & Martı´nez, L. (2001) “A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi expert decision making”, IEEE Transactions on Systems, Man and Cybernetics. Part B: Cybernetics, 31 (2): 227–234.

[20] Mendel, J. M. (2009) “Historical reflections and new positions on perceptual computing”, Fuzzy Optimization and Decision Making, 8 (4): 325–335.

[21] Mendel, J. M. & Wu, D. (2010) “Perceptual Computing: Aiding People in Making Subjective Judgments”, Wiley-IEEE Press.

[22] Forbus, K. D. (1996) “Qualitative Reasoning, CRC Hand-Book of Computer Science and Engineering”, CRC Press, Boca Raton, FL.

[23] Agell, N., Ganzewinkel, C. J. V., Sánchez, M., Roselló,L., Prats, F. & Andriessen, P. (2015) “A consensus model for Delphi processes with linguistic terms and its application to chronic pain in neonates definition”, Applied Soft Computing, 35: 942-948.

[24] Dubois, D. & Prade, H. (1983) “Ranking fuzzy numbers in the setting of possibility theory”, Information Sciences, 30: 183–224.

[25] Tapia, G. J., Del Moral, M., Martı´nez, M. & Herrera, V. E. (2012) “A consensus model for group decision making problems with linguistic interval fuzzy preference relations”, Expert Systems with Applications, 39: 10022–10030.

[26] Forbus, K. D. (1984) “Qualitative process theory”, Artificial Intelligence, 24: 85–168.

[27] Sanayei, A., Ghazifard, A. M. & Sobhanmanesh, F. (1390) “Factors Affecting the Development of Identification Technology Through radio frequencies (RFID) in Management of Electronic Supply Chain (E-SCM), Case Study: Iran Khodro Co”, Journal of New Marketing Research, 1(1): 41-70, (In Persian).

[28] Roselló, L., Prats, F., Agell, N. & Sánchez, M. (2010) “Measuring consensus in group decisions by means of qualitative reasoning”, International Journal of approximate reasoning, 51: 441–452.

[29] Asgharpour, M. J. (1388) “Multiple Criteria Decision Making, Tehran University Publishers, Tehran, (In Persian).

[30] Aliahmadi, A., Saeidnahaei, V. & Masoumi, J. (1384) “Developing a Delphi Method Using Fuzzy Logic and Its Application in Strategic Planning”, Journal of Modiriate Farda, 2(9, 10): 103-119, (In Persian).

[31] Mousavi, P., Yousefi Zenouz, R. & Hasanpour, A. (1394) “Identifying Organizational Information Security Risks Using the Fuzzy Delphi Method in the Banking Industry”, Journal of Information Technology Management, 7(1): 184-163, (In Persian).

[32] Divsalar, M., Safaei Ghadikolaei, A. & Madhoushi, M. (1396) “Extension of the DANP decision making method based on interval-valued hesitant fuzzy sets”, Modern Researches in Decision Making, 2(3): 123-145, (In Persian).

[33] Mosavi, S. F., Azar, A., Rajabzadeh, A. & Khadivar, A. (1397) “Designing model for performance-based budget using fuzzy cognitive mapping and software systems methodology and fuzzy topsis”, Journal of Management Research in Iran, 22 (1): 299-322, (In Persian).