مدل‌سازی و حل مسئله چند‌هدفه مسیریابی وسایل نقلیه شرکت‌های پخش با محدودیت‌های فازی و احتمالی (مطالعه موردی)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده علوم اقتصادی و اداری، دانشگاه مازندران، مازندران، ایران

2 استادیار، گروه مدیریت صنعتی، دانشکده علوم اقتصادی و اداری، دانشگاه مازندران، مازندران، ایران

3 دانشیار، گروه مدیریت صنعتی، دانشکده علوم اقتصادی و اداری، دانشگاه مازندران، مازندران، ایران

چکیده

مساله مسیریابی وسایل نقلیه از مهمترین مسائل برنامه‌ریزی حمل و نقل است. مساله مسیریابی در شرکت‌های توزیع و پخش که حمل ‌و نقل بخش عمده هزینه‌ها را به خود اختصاص می‌دهد، بسیار حائز اهمیت است. در این پژوهش با توجه به نیاز موجود در شرکت‌های توزیع و پخش و در نظر گرفتن محدودیت‌های دنیای واقعی مانند زمان سرویس احتمالی، تقاضای فازی و محدودیت پنجره زمانی یک مدل برنامه‌ریزی غیرخطی عدد صحیح مختلط ارائه گردید، سپس با کمک تکنیک‌های تحلیلی، مدل غیرخطی به مدل خطی تبدیل شد. از نرم افزار GAMS برای اعتبار سنجی مدل پیشنهادی استفاده شد، . با توجه به ان_پی سخت بودن مساله مذکور و به منظور حل آن در ابعاد بزرگ، الگوریتم ژنتیک مرتب‌سازی نامغلوب نخبه‌گرا ((NSGA-II و الگوریتم بهینه‌سازی چندهدفه کلونی مورچگان (MOACO) طراحی شد. کارایی الگوریتم‌های طراحی شده، با استفاده از شاخص‌های سنجش کارایی الگوریتم‌های فراابتکاری چندهدفه مورد بررسی قرار گرفت و نتایج حاکی از کارا بودن الگوریتم NSGA-II بوده است. در ادامه با استفاده از الگوریتم پیشنهادی به حل مساله مسیریابی شرکت مورد مطالعه پرداخته شد و راهکارهای عملی با توجه به نیاز مدیریت شرکت ارائه گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and solving Multi-objective Vehicle Routing Problem of Distribution Companies with Fuzzy and Stochastic Constraints (Case Study)

نویسندگان [English]

  • zeinab asadi 1
  • Mohammad Valipour khatir 2
  • abdolhamid safaei 3
1 MSc student, Faculty of Economics and Administration, The University of Mazandaran, Mazandaran, Iran
2 Assistant Professor, Faculty of Economics and Administration, The University of Mazandaran, Mazandaran, Iran
3 Associate Professor, Faculty of Economics and Administration, The University of Mazandaran, Mazandaran, Iran
چکیده [English]

Vehicle routing problem is one of the most important problems in transportation programming. Vehicle routing problem plays an important role in distribution companies because the much of the system costs are related to it. In this paper, a mix integer nonlinear programming model is presented considering the existing demand in distribution companies and real world's restrictions, including Stochastic service time, fuzzy demand and time window limitation. Then, the nonlinear model is equated with the linear model using analytical techniques, for its validity evaluation, GAMS software was utilized. Also, With respect to the fact that this problem is NP-Hard, non-dominated sorting genetic algorithm and multi-objective ant colony optimization algorithm are designed. To demonstrate the efficiency of designed algorithms, evaluation indicators of multi-objective meta-heuristic algorithm's efficiency are utilized. The results indicates that the non-dominated sorting genetic algorithm is more efficient. The issue of the company in questioned via the proposed algorithm. And according to company's management need, practical approach are presented.

کلیدواژه‌ها [English]

  • Multi-objective Vehicle Routing Problem
  • Fuzzy and Stochastic Constraints
  • Elitist non-dominated sorting GA
  • Multi-Objective Ant Colony Optimization
[1]      McKinnon, A. Sustainable distribution: opportunities to improve vehicle loading. Industry and environment, 23(4), 2000, 26-27.‏

[2]      Ongtang, M., & Sirivunnabood, S. Transportation backhaul matching using binary programming model: a case study on third-party logistics network in Thailand. Lecture notes on software engineering2(3), 2014, 251.

[3]      Zafari, Hashemi, Yousefi. An effective genetic algorithm for solving vehicle routing problems. International Journa Of Industrial Engineering & Production Research. 21(2), 2009, 63-76.

[4]      Ranjbar, azade. Reengineering the supply chain network by considering routing decisions, Modern researches in decision making, 2(3), 2016, 19-20.

[5]      Y. Ren, M. Dessouky, & F.Ordóñez. The multi-shift vehicle routing problem with overtime. Computers & Operations Research, 37(11), 2010, 1987-1998.‏

[6]      Falkenauer, E. A hybrid grouping genetic algorithm for bin packing. Journal of heuristics, 2(1), 1996, 5-30.‏

[7]      Mester, D., Bräysy, O., Dullaert, W. A multi-parametric evaluation strategies algorithm for vehicle routing problems. Expert Systems with Applications, 32, 2007, 508–517.

[8]      Vayssettes-Courchay, C., Bouysset, F., Cordi, A., Laubie, M., & Verbeuren, T. J. Effects of medullary α 2-adrenoceptor blockade in the rat. European journal of pharmacology, 453(2), 2002, 287-297.‌

[9]      Hosseini, khalji aliaei. Mathematical modeling of locating-routing problem considering the capacity, variety and traffic constraints of transportation vehicles and development of a model of solving based on an ant colony algorithm. International Journal Of Industrial Engineering & Production Research. 3(5), 2015, 91-105.

[10]   Dantzig, G. B., & Ramser, J. H. The truck dispatching problem. Management science, 6(1), 1959, 80-91.‏

[11]   Dantzig, G. B., & Fulkerson, D. R. Minimizing the number of tankers to meet a fixed schedule. The Basic George B. Dantzig, 2003, 217-222.

[12]   Clarke, G., & Wright, J. W. Scheduling of vehicles from a central depot to a number of delivery points. Operations research. 12(4), 1964, 568-581.‏

[13]   Golden, B. L., Magnanti, T. L., & Nguyen, H. Q. Implementing vehicle routing algorithms. Networks, 7(2), 1977, 113-148.‏

[14]   Solomon, M. M. Algorithms for the vehicle routing and scheduling problems with time window constraints, Operations research. 35(2), 1983, 254-265.

[15]   Cordeau, J.F. and Laprate, G. “Vehicle routing.” Cote Catherine montereal Canada, 2005.

[16]   El-Sherbeny, N. A. Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods. Journal of King Saud University Science, 22(3), 2010, 123-131.‏

[17]   Bérubé, J, "An exact ϵ-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits.  European Journal of Operational Research. 194(1), 2009, 39-50.

[18]   Eidi, Ghasemi nezhad, The vehicle routing problem with time window and multi demand. Iranian Journal of Supply Chain Management, 14(37), 2009, 38-43.

[19]   Kumar, R. S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L. S., & Tiwari, M. K, Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach. Computers & Industrial Engineering. 99(1), 2016, 29-40.‏

[20]   Laporte, G., Louveaux, F., Mercure, H., The vehicle routing problem with stochastic travel times. Transportation Science; 26(3), 1992, 161–170.

[21]    Miranda, D. M., & Conceição, S. V, The vehicle routing problem with hard time windows and stochastic travel and service time. Expert Systems with Applications, 64(1), 2016, 104-116.

[22]   Teodorovich, D., Pavkovickm, G., A simulated annealing technique approach to the vehicle routing problem in the case of the stochastic. Transportation Planning and Technology, 16(4), 1992, 261– 273.

[23]   Wang, H. F., Wen, Y. P., Time-constrained Chinese postman problems. Computer and Mathematical Application, 44, 2004, 375-387.

[24]   Cao, E., & Lai, M. The open vehicle routing problem with fuzzy demands. Expert Systems with Applications, 37(3), 2010, 2405-2411.‌

[25]   Shi, Y., Boudouh, T., & Grunder, O, A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand. Expert Systems with Applications, 72, 2017, 160-176.‌

[26]   Behnamian, J., Adabi, F. Competitive Production Problem: Modeling, Solving and Valid Inequalities, Modern researches in decision making, 3(2), 2018, 55-79.

[27]   Sherali, H., Alameddine, A, A new reformulation-linearization technique for bilinear programming problems. Journal of Global Optimization, 2(4), 1992, 379–410.

[28]   Sakawa, M., Fuzzy Sets and Interactive Multi objective Optimization. Plenum Press, NewYork, 1993.

[29]   Molla-alizade-Zavardehi, S., Nezhad, S. S., Tavakkoli-Moghadam, R., & Yazdani, M. Solving a fuzzy fixed charge solid transportation problem by metaheuristics. Mathematical and computer Modeling, 57(5), 2013, 1543-1558.

[30]   Taghavifard, S., dehghani, M., aghaei, M.. The Model for Lot Sizing Problem with Supplier Selection and Solving by NSGA-II (Case Study: Morvarid Panberiz Company). The Modares Journal of Management Research in Iran, 19(2), 2015 65-89.

[31]   Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd end. Springer, New York, 2007.

[32]   Rezaeian, javad. Shafipour omrani, milad. Modern meta- heuristics algorithms  (step by step implementation in MATLAB), Mazandaran University Jihad, 1396, 81-84.

[33]   Abraham, L. Jain, and R. Goldberg, editors. Evolutionary Multiobjective Optimization. Theoretical Advances and Applications. Springer, USA, 2005.

[34]   Donoso, Yeizd, and Ramon Fabergate. Multi-Objective optimization in computer networks using metheuristics. New York: taylor and Francis Group, LLC, 2007.

Ghosh, Ashish, Satchidananda Dehuri. Multi-Objective Evolutionary Algorithms for Knowledge Discovery from Databases. Berlin, Germany: Springer-Verlage Berlin Heidelberg, 2008.