ارائه مدل مکان‌یابی سلسله مراتبی پوششی با حالت چند دوره‌ای در شرایط عدم قطعیت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد مهندسی صنایع، دانشگاه خوارزمی، تهران، ایران

2 دانش‌آموخته کارشناسی ارشد مهندسی صنایع، دانشگاه بوعلی سینا، همدان، ایران

3 دانشیار، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

این پژوهش در زمینه مدل مکان‌یابی پوششی سلسله‌مراتبی با در نظر گرفتن رویکرد پویا و پارامترهای فازی (شعاع پوشش و مقدار تقاضا در دوره‌‌های مختلف به‌صورت فازی)، ارائه و بررسی می‌شود. هدف از این پژوهش، ارائه مدلی برای مکان‌یابی و تخصیص بیمارستان‌ها و ماشین‌‌های واسطه که شامل تخصیص بالگرد امداد و آمبولانس به نقاط تقاضا، به‌منظور استقرار و پوشش نقاط تقاضایی که در شعاع پوشش آن‌ها قرار دارند، است. در این پژوهش، احتمال مشغول بودن تسهیلات نیز در نظر گرفته شده است. جایگاه بیمارستان‌‌های فوق تخصصی، بیمارستان و کلینیک یک‌ مرتبه مکان‌یابی می‌‌شود و در دوره‌‌های مختلف ثابت هستند. برای نزدیکی بیشتر به واقعیت از مفهوم فازی استفاده شده است. مکان تسهیلات خدماتی شامل آمبولانس‌‌ها و بالگرد در دوره‌های مختلف متغیر است و برای این جابجایی‌ها هزینه‌‌هایی نیز در نظر گرفته شده است. ماشین خدماتی، بیمارستان‌ها و کلینیک‌‌ها دارای محدودیت ظرفیت هستند. با توجه به اینکه هدف فقط صحه‌گذاری مدل است، از داده‌های عددی استفاده شده است. با استفاده از مثال عددی در مقیاس‌‌های کوچک از روش قطعی نرم‌افزار گمز و برای مقیاس‌‌های بزرگ‌تر از الگوریتم فراابتکاری مصنوعی زنبوران[1] و رقابت استعماری[2] استفاده شده است. برای صحه‌گذاری مدل پیشنهادی آن را با مدل بشیری و همکاران مورد مقایسه قرار داده‌ایم که نتایج عددی نشان دهنده کارایی مطلوب روش حل پیشنهادی و مدل مسئله است.



[1]. Artificial Bee Colony


[2]. Imperialist Competitive Algorithm

کلیدواژه‌ها


عنوان مقاله [English]

A Hierarchical Covering Location Model with a Multi Period under Uncertainty

نویسندگان [English]

  • Samaneh BabaeiMorad 1
  • Hassan Bagheri 2
  • Javad Behnamian Behnamian 3
1 M.S Student Faculty of Industrial Engineering, Kharazmi University, Tehran, Iran
2 M.S Student Faculty of Industrial Engineering, Bu-Ali Sina, Hamadan, Iran
3 Associate Professor, Faculty of Industrial Engineering, Bu-Ali Sina, Hamadan, Iran
چکیده [English]

In this study, the model in the framework of hierarchical covering location by taking a dynamic approach (the radius of coverage and the amount of demand in different periods dynamically) in the fuzzy provide and studied. Location and allocation model for hospitals and facilities that includs rescue helicopter and ambulance to the demand, to establish and cover of demand that they are in the radius of coverage, provided, and also considered the possibility of being busy facility. The status of Subspecialty hospital, hospital and clinic locate and in different periods of time are fixed. Fuzzy concept has been used to draw closer to reality. Site of the service facilities, including ambulances and helicopters are variable in different periods. Also in models for this movement is considered cost. Services machines and hospitals and clinics have limited capacity. Given the fact that the goal is just to validate the model, numerical data is used. The method of solving this problem is using the numerical example of the GAMs software definitive method, and for larger scales, the ABC algorithm and ICA are used. To validate the proposed model, it compares it with Bashiri et al. Model model. The numerical results show the optimal efficiency of the proposed solution method and the problem model.

کلیدواژه‌ها [English]

  • Hierarchical location
  • Covering location
  • Dynamic covering
  • Emergency facility location
  • Fuzzy location
[1]      Rahman, SD, Smith, K, Use of location-allocation models in health service development planning in developing nations. European Journal of Operational Research, (2000), 123 (3), 437–452

[2]      ReVelle, C.S., Eiselt, H.A., Location analysis: a synthesis and survey, European Journal of Operational Research, (2005), 165 (1), 1–19.

[3]      Rahman, S., Smith, D. K., Use of location-allocation models in health service developmen   planning in developing nations. European Journal of Operational Research, (2000), 123 (3), 43.

[4]      Amiri, M.,Taghavi fard, M.T., Aghaei, M., provide fuzzy optimization model for sustainable design of data urban wastewater collection and transfer network for agricultural use in uncertain condition, New Researchin decision making in Iran,(2016), 1-24.

[5]      Cadenas, J.M,. Verdegay, J.L., Using fuzzy numbers in linear programming, IEEE Transactions on Systems. Man and Cybernetics Part B—Cybernetics, (1997), 27, 1016–1022.

[6]      Y. Garmeyi, M. Bashiri, Modeling and Solving the Dynamic Gradual Covering Location Problem, Iranian Journal of Industrial Engineering and Management, (2015), 151, 376-389.

[7]      Gendreau, M., Laporte, G., Semet, F., A dynamic model and parallel tabu search heuristic for real time ambulance relocation, Parallel Computing, (2001), 27 1641-1653.7.

[8]      Rajagopalan, H.K., Saydam, C., Xiao, J., A multi-period set covering location model for dynamic redeployment of ambulances, Computers & Operations Research, (2008),  35, 814–826 ,8.

[9]      Schmid, V., Doerner, K.F., Ambulance location and relocation problems with time-dependent travel times, European Journal of Operational Research, (2010), 207, 1293–1303.

[10]   Erdemir, E. T., Batta, R., Spielman, S., Rogerson, P. A., Blatt, A., & Flanigan, M., Joint ground and air emergency medical services coverage models: A greedyheuristic solution approach. European Journal of Operational Research, (2010), 207, 736–749.

[11]   Jung, M.L., Young, H.L., Tabu based heuristics for the generalized hierarchical covering location problem.Computers & Industrial Engineering, (2010), 58, 638–645.

[12]   Guvenc, S., Haldun, S., A review of hierarchical facility location models. Computers & Operations Research, (2007), 34, 2310 – 2331.

[13]   Baykasoglu, A, Göçken, T, A review and classification of fuzzy mathematical programs. Journal of Intelligent & Fuzzy Systems, (2008), 19, 205–229.

[14]   [14]. Cadenas, J.M, Verdegay, J.L, “Using fuzzy numbers in linear programming, IEEE Transactions on Systems”, Man and Cybernetics Part B—Cybernetics, (1997), 27, 1016–1022.

Yager, R, “Ranking fuzzy subsets over the unit interval, in: Proceedings of 17th IEEE International Conference on Decision and Control”, San Diego, CA, (1979), 54, 1435–1437.