تخمین قابلیت اطمینان‌ تأمین‌کننده در شرایط اختلال با استفاده از شبکه بیزین و با رویکرد فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 استادیار، دانشکده مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

امروزه، تأمین‌کنندگان نقش بسیار مهمی برای شرکت‌ها و سازمان‌ها دارند. انتخاب صحیح تأمین‌کنندگان می‌تواند به‌عنوان یک مزیت رقابتی مهم در بازار برای شرکت‌ها و سازمان‌ها مطرح شود. ازآنجایی‌که تأمین‌کنندگان رابطه تنگاتنگی با سازمان‌ها دارند و تولید و خدمات نهایی آن‌ها، هم از لحاظ کیفیت و هم هزینه، به تأمین‌کنندگان وابسته است. یکی از راهکارها در شرایط بحرانی و اختلال، استفاده از تأمین‌کنندگان قابل‌اعتماد برای گذر از شرایط بحرانی و تأمین مواد اولیه لازم است. در این مقاله با بررسی اختلالات تأمین‌کنندگان و در نظر گرفتن رابطه موجود بین آن‌ها و با استفاده از روش تحلیل درخت خطا (FTA) و تبدیل آن به شبکه بیزین، قابلیت اطمینان تأمین‌کننده تخمین زده شده ‌است. به علت دقیق‌نبودن اطلاعات ورودی از رویکرد نظریه فازی استفاده می‌شود. در این مقاله برای اعتبار سنجی مدل ارائه‌شده
قابلیت اطمینان دو‌ تأمین‌کننده پژوهشکده زیرسطحی اصفهان موردمطالعه قرار
گرفته می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Estimate the reliability of the supplier in the disruption using Bayesian networks and fuzzy approach

نویسندگان [English]

  • pourya naseri 1
  • mohammad Hossine karimi 2
1 PhD. Student, Faculty Industrial Engineerig, Malek Ashtar University of Technology, Tehran, Iran
2 Associate Professor, Faculty Industrial Engineerig, Malek Ashtar University of Technology, Tehran, Iran, mh_karimi@aut.ac.ir
چکیده [English]

Today, suppliers have a very important role for companies and organizations and Proper choice of suppliers can be considered as an important competitive advantage in the market for companies and organizations. Since suppliers have a close relationship with organizations, their final production and services depend on suppliers both in terms of quality and cost. One of the solutions in critical situations and disruptions is the use of reliable suppliers to overcome critical situations and provide raw materials. In this paper, the reliability of the supplier is estimated by examining supplier disturbances and considering the relationship between them and using the Failure Tree Analysis (FTA) technique and transforming it into the Bayesian networks. Fuzzy theory approach is used due to the precision of input information. In this paper, the validation model provided of the two suppliers of the sub-surface research institute in Isfahan has been evaluated for validation of the model.

کلیدواژه‌ها [English]

  • Supplier
  • Reliability
  • Bayesian networks
  • fuzzy theory

[1]      Wu, T.;grady, P.; (2007). “methodologyfor supply chain distruption analysis. International journal of productio research” 45:  1665-1682.

[2]      Kevin, B.; Hendricks; Vinod; R. Singhal.; (2003). “The effect of supply chain glitches on shareholder wealth” Journal of Operations Management 21:501–522.

[3]      Wlendahl, H.; Cleminskf, G. V.; Begemann C.; (2003).“A Systematic Approach for Ensuring the Logistic Process Reliability of Supply Chains”CIRP Annals - Manufacturing Technology 52, (1): 375–38.

[4]      Berger, P. D.; Gerestenfeld, A.; “How many suppliers are best? A decision-analysis approach” Journal Omega (2004): 32 9-5.

[5]      Hallikas, J.; Puumalainen, K.; Vesterinen T.; Virolainen V.; (2005) . “Risk-based classification of supplier relationships” Journal of Purchasing & Supply Management 11:72–82.

[6]      Tang, C. S.; (2006). “Perspectives in supply chain risk management” Int, J. Of Production Economics 103:451-488.

[7]      Nieuwenhuyse, I. V.; Vandaele, N.; (2007). “The impact of delivery lot splitting on delivery reliability in a two-stage supply chain” International Journal of Production Economics  104 (2): 694–708.

[8]      Burke, J. G.; Janice, E.; Carrillo.; (2007) . “Single versus multiple supplier sourcing strategies” European Journal of Operational Research 182:  95–112.

[9]      Costantino, N.; PellegrinoR.; (2010) . “Choosing between single and multiple sourcing based on supplier default risk” Journal of Purchasing & Supply Management 16: 27–40.

[10]   Davarzani, H.; Zegordi, S. H.; (2011). “Contingent management of supply chain disruption: Effects of dual or triple sourcing”Scientia Iranica E 18:  1517–1528.

[11]   Zhou, C.; Chinnam, R. B.; Korostelev,  A.; (2012). “Hazard rate models  for early detection of reliability problems using information from    warranty databases and upstream supply chain”  International Journal of  Production Economics, 139: 180-195.

[12]   Zegordi, S. H.; Davarzani, H.; (2012) .“Developing a supply chain disruption analysis model: Application of colored Petri-nets” Expert Systems with Applications 39:  2102–2111.

[13]   Danese, P.; Romano, P.; Formentini M.; (2013) . “The impact of supply chain integration on responsiveness:The moderating effect of using an international supplier network” Transportation Research Part E 49: 125–140.

[14]   Kazemi, M.; Alizadeh, A.; (2014).“Optimum Selection Of Suppliers Based On AHP-DEA-TOPSIS Combined approach“;Journal Of Operational Reserch And Its Applications ; 37 - 53.

[15]   Radfar,R.; Salahi, F.; “Evaluation and ranking of suppliers with fuzzy DEA and PROMETHEE approach”; International Journal of Industrial Mathematics SUMMER 2014 , Volume 6 , Number 3; Page(s) 189 To 197.

[16]   Azadi, M.; Jafarian, M.; Farzipoor Saen, R.; Mirhedayatian, S.M.; (2015). “A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context”; Computers & Operations Research; Volume 54, Pages 274–285.

[17]   Azizi H, Jahed R.(2015), “Supplier Selection in Volume Discount Environments in the Presence of Both Cardinal and Ordinal Data: A New Approach Based On Double Frontiers DEA”,Modern researches in decision making, 19 (3) :191-217.

[18]   KianiMavi R., Goh M., KianiMavi N., (2016),  “Supplier Selection with Shannon Entropy and Fuzzy TOPSIS in the Context of Supply Chain Risk Management”, Procedia - Social and Behavioral Sciences, PP. 216-225.

[19]   Venkatesan S., Goh M., (2016), ” Multi-objective supplier selection and order allocation under disruption risk”. Transportation Research Part E: Logistics and Transportation Review, Volume 95, Pages 124-142.

[20]   Kırılmaz O., Erol S., (2017), “A proactive approach to supply chain risk management: Shifting orders among suppliers to mitigate the supply side risks”, Journal of Purchasing and Supply Management, Volume 23, Issue 1, Pages 54-65.

[21]   Liu J., An R., Xiao Y., Yang Y., Wang Q., (2017),  “Implications from substance flow analysis, supply chain and supplier’ risk evaluation in iron and steel industry in Mainland China”, Resources Policy,  51, 272-282.

[22]   Babaee L, Rabieh M, Nikbakhsh E, Esmaeili M,.(2017)., “Multi- Objective Mathematical Model for Green Supplier Selection (Case Study: Supply Chain of IRAN KHODRO Company)”, Management Researches in Iran,  2(2), PP:51-83.

[23]   Karimi T, bandesi S., (2018), “Service Supply Chain Risk Assessment Applying Rough Set Theory Approach: Case of Payment Service Providers”., Management Researches in Iran, 22 (1), PP :69-94

[24]   Vahidi F., Torabi A., Ramezankhani M., (2018), “Sustainable supplier selection and order allocation under operational and disruption risks”, Journal of Cleaner Production, Volume 174, Pages 1351-1365.

[25]   Karbasian, M., SHarifi, M., GHolami, S.M.H., SHarifi, S.M.M, (2012).,”Reliability Engineering”, Publications omid enghelab.

[26]   Karbasian, M.; Radpour, H.; (2012). “Systems engineering toolset for design engineers” Publications Arkane danesh

[27]   Tuncel, G., & Alpan, G. )2010.( “Risk assessment and management for supply chain networks: A case study”. Computers in Industry, 61: 250–259.

[28]   Hittle, B., & Leonard, K.M.  )2011.( “Decision making in advance of a supply chain crisis”, Management Decision, 49(7): 1182-1193.

[29]   Moeinzadeh, P., & Hajfathaliha, A. )2010.( “A Combined Fuzzy Decision Making Approach to Supply Chain Risk Assessment”. International Journal of Human and Social Sciences, 5(13): 859-875.

[30]   Tang, O., & Nurmaya Musa, S. )2011).   “Identifying risk issues and research advancements in supply chain risk management”. International Journal Production Economics, 133: 25–34.

[31]   Wu, T., Blackhurst, J., & Chidambaram, V. )2006.( “ A model for inbound supply risk analysis. Computers in Industry”, 57: 350-365.

[32]   Vilko, J., Hallikas, J.M. )2012.( “ Risk assessment in multi modal supply chains”. International Journal of Production Economics, 140: 586-595.

[33]   Manuj, I., & Mentzer, J. )2008.( “Global supply chain risk management strategies”. International Journal of Physical Distribution and Logistics Management, 38(3): 192–223.

[34]   Hendricks, K. & Singhal, V.R. (2005). “the effect of supply chain disruption on long-term shareholder value, profitability, and share price volatility. Atianta: Research report, Georgia Institute of technology, USA.

[35]   Tang, C. (2006). “Robust strategies for mitigating supply chain disruption”. International Journal of Logistics: Research and Application, 9, 33-45.

[36]   Peck, H.(2005). “Drivers of supply chain vulnerability : An integrated framework”. International Journal of physical disruption & logistics management, 35, 210-232.

[37]   Juttner, U. (2005). “supply chain risk management: Understanding the business requirements from a practitioner perspective”. The International Journal of logistics management, 16, 120-141

[38]   Colombo, A. G.; (1987). “Uncertainty propagation in fault tree analysis, Reliability Modelling and Application” (edited by Colombo, A. G. and Keller, A. Z.: 95-1 03.