"بررسی رابطه بین ساختار شبکه تامین با کارایی تولید: رویکرد تحلیل شبکه اجتماعی و تحلیل پوششی داده ها"

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجو دکتری مدیریت صنعتی دانشگاه تربیت مدرس

2 دانشیار، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

3 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

چکیده

بسیاری از محصولات در شبکه‌ای از شرکت‌های به هم مرتبط تولید می شوند. از دیدگاه شبکه تامین، جایگاه نسبی شرکت‌ها در ارتباط با یکدیگر بر استراتژی و رفتار آن ها موثر است. علی رغم اهمیت چنین شبکه‌هایی کمتر درباره الگوهای ارتباطی و پیچیدگی ساختاری آن‌ها بحث شده است. رویکرد تحلیل شبکه اجتماعی یک روش مناسب برای مدلسازی و شناخت پیچیدگی‌های ساختاری چنین شبکه‌هایی است. از این رو در این مطالعه از داده‌های جمع آوری شده از روابط تامین کننده –خریدار 45 شرکت شبکه تامین فولاد ایران به منظور بررسی اثر متغیرهای مرکزیت برگرفته از تحلیل شبکه اجتماعی بر کارایی اجزای شبکه استفاده شد. در یک فرایند چند مرحله‌ای از تحلیل پوششی داده‌ها با مدل BCC ورودی محور برای اندازه‌گیری کارایی در سطح‌شرکت ها و از تحلیل شبکه اجتماعی برای محاسبه ویژگی‌های مرکزیت شبکه تامین استفاده شد. سپس با استفاده از رگرسیون پانلی با اثرات ثابت متغیرهایی که بیشترین ارتباط را با کارایی دارند، شناسایی شدند. نتایج این پژوهش نشان داد که در شبکه روابط لجستیکی، مرکزیت درون درجه‌ای و بینابینی با کارایی رابطه مستقیم و مرکزیت برون درجه‌ای با آن رابطه معکوس دارند. همچنین، در شبکه روابط قرادادی نیز مرکزیت درجه رابطه مستقیم و مرکزیت بردارویژه رابطه معکوس با کارایی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

"Investigating the relationship between supply network structure and production efficiency: social network analysis and data envelopment analysis"

نویسندگان [English]

  • mahin sabet sarvestani 1
  • Abbas Moghbel BaArz 2
  • adel azar 3
1 phd student, industrial management, tarbiat modares university
2 Associate Professor
3 Professor, Department of Industrial Management, Faculty of Management & Economics, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Many products are produced in networks of firms connected to each other by transactions. From a supply network perspective, the relative position of individual firms with respect to one another affects both strategy and behavior. Despite the importance of such networks little is known about relationship patterns and structural complexity of them. Social network analysis (SNA) approach is a proper method for modelling and understanding structural attributes of such networks. Hence, this study identifies those centrality measures of SNA highly related with supply network efficiency, using buyer-supplier relationship data collected from 45 steel companies in Iran. In a multistage procedure, a DEA model (BCC-input oriented) is used to calculate firm level efficiencies and SNA is applied to measure centrality metrics in supply network. Then, these variables are applied in data panel regression with constant effects to identify those variables most relevant to productive efficiency. The results indicated productive efficiency has positive association with in- degree and betweenness centrality and negative association with out-degree centrality in logistic flow network. Also, in the contractual relationship network, productive efficiency has positive association with degree centrality and negative association with eigenvector Researches in the literature have confirmed although not without exceptions

کلیدواژه‌ها [English]

  • Supply network structure
  • Social network Analysis (SNA)
  • Data Envelopment Analysis (DEA)
  • steel industry
  • Productive efficiency

[1]      Ross, D.F., Introduction to e-supply chain management: engaging technology to build market-winning business partnerships. 2016: CRC Press.

[2]      Lambert, D.M. and M.G. Enz, Issues in supply chain management: Progress and potential. Industrial Marketing Management, 62, 2017, 1-16.

[3]      Hoyt, J. and F. Huq, From arms-length to collaborative relationships in the supply chain: An evolutionary process. International Journal of Physical Distribution & Logistics Management, 30(9), 2000, 750-764.

[4]      Hammervoll, T., Value creation in supply chain relationships: a critique of governance value analysis. European Journal of Marketing, 43(5/6), 2009, 630-639.

[5]      Pathak, S.D., et al., Complexity and Adaptivity in Supply Networks: Building Supply Network Theory Using a Complex Adaptive Systems Perspective. Decision Sciences, 38(4), 2007, 547-580.

[6]      Min, H. and G. Zhou, Supply chain modeling: past, present and future. Computers & Industrial Engineering, 43(1), 2002, 231-249.

[7]      Bellamy, M.A. and R.C. Basole, Network analysis of supply chain systems: A systematic review and future research. Systems Engineering, 16(2), 2013, 235-249.

[8]      Kao, T.-W.D., et al., Relating supply network structure to productive efficiency: A multi-stage empirical investigation. European Journal of Operational Research, 259(2), 2017, 469-485.

[9]      Kim, Y., et al., Structural investigation of supply networks: A social network analysis approach. Journal of Operations Management, 29(3), 2011, 194-211.

[10]    Basole, R.C., et al., Models of Complex Enterprise Networks. Journal of Enterprise Transformation, 1(3), 2011, 208-230.

[11]    Martínez-Núñez, M. and W.S. Pérez-Aguiar, Efficiency analysis of information technology and online social networks management: An integrated DEA-model assessment. Information & Management, 51(6), 2014, 712-725.

[12]    Shao, B.B.M. and W.T. Lin, Technical efficiency analysis of information technology investments: a two-stage empirical investigation. Information & Management, 39(5), 2002, 391-401.

[13]    Rodríguez, R.R., Social network analysis and supply chain management. International Journal of Production Management and Engineering (IJPME), 4(1), 2016, 35-40.

[14]    Hollenbeck, J.R. and B.B. Jamieson, Human capital, social capital, and social network analysis: Implications for strategic human resource management. Academy of management perspectives, 29(3), 2015, 370-385.

[15]    Carpenter, M.A., M. Li, and H. Jiang, Social network research in organizational contexts: A systematic review of methodological issues and choices. Journal of Management, 38(4), 2012, 1328-1361.

[16]    Chan, K. and J. Liebowitz, The synergy of social network analysis and knowledge mapping: a case study. International journal of management and decision making, 7(1), 2005, 19-35.

[17]    Basole, R.C., Topological analysis and visualization of interfirm collaboration networks in the electronics industry. Decision Support Systems, 83, 2016, 22-31.

[18]    Freeman, L.C., Centrality in social networks conceptual clarification. Social networks, 1(3), 1978, 215-239.

[19]    Hanneman, R.A. and M. Riddle, Introduction to social network methods. 2005.

[20]    Yan, T., et al., A Theory of the Nexus Supplier: A Critical Supplier From A Network Perspective. Journal of Supply Chain Management, 51(1), 2015, 52-66.

[21]    Autry, C.W. and S.L. Golicic, Evaluating buyer–supplier relationship–performance spirals: A longitudinal study. Journal of Operations Management, 28(2), 2010, 87-100.

[22]    Benedek, G., Á. Lublóy, and G. Vastag, The Importance of Social Embeddedness: Churn Models at Mobile Providers. Decision Sciences, 45(1), 2014, 175-201.

[23]    Bond, E.U., M.B. Houston, and Y. Tang, Establishing a high-technology knowledge transfer network: The practical and symbolic roles of identification. Industrial Marketing Management, 37(6), 2008, 641-652.

[24]    Carnovale, S. and S. Yeniyurt, The Role of Ego Networks in Manufacturing Joint Venture Formations. Journal of Supply Chain Management, 50(2), 2014, 1-17.

[25]    Carter, C.R., L.M. Ellram, and W. Tate, THE USE OF SOCIAL NETWORK ANALYSIS IN LOGISTICS RESEARCH. Journal of Business Logistics, 28(1), 2007, 137-168.

[26]    Choi, T.Y. and J.K. Liker, Bringing Japanese Continuous Improvement Approaches to U.S. Manufacturing: The Roles of Process Orientation and Communications. Decision Sciences, 26(5), 1995, 589-620.

[27]    Eklinder-Frick, J., L.T. Eriksson, and L. Hallén, Multidimensional social capital as a boost or a bar to innovativeness. Industrial Marketing Management, 43(3), 2014, 460-472.

[28]    Bellamy, M.A., S. Ghosh, and M. Hora, The influence of supply network structure on firm innovation. Journal of Operations Management, 32(6), 2014, 357-373.

[29]    Von Raesfeld, A., et al., Influence of partner diversity on collaborative public R&D project outcomes: A study of application and commercialization of nanotechnologies in the Netherlands. Technovation, 32(3-4), 2012, 227-233.

[30]    Fox, G.L., et al., Weaving webs of innovation. International Journal of Operations & Production Management, 33(1), 2013, 5-24.

[31]    Gao, G.Y., E. Xie, and K.Z. Zhou, How does technological diversity in supplier network drive buyer innovation? Relational process and contingencies. Journal of Operations Management, 36, 2015, 165-177.

[32]    Iyengar, D., S. Rao, and T.J. Goldsby, The Power and Centrality of the Transportation and Warehousing Sector within the US Economy: A Longitudinal Exploration Using Social Network Analysis. Transportation Journal, 51(4), 2012, 373-398.

[33]    Pitt, L., et al., Global alliance networks: A comparison of biotech SMEs in Sweden and Australia. Industrial Marketing Management, 35(5), 2006, 600-610.

[34]    Terpend, R. and B. Ashenbaum, The intersection of power, trust and supplier network size: Implications for supplier performance. Journal of Supply Chain Management, 48(3), 2012, 52-77.

[35]    Ferguson, R.J., M. Paulin, and J. Bergeron, Contractual governance, relational governance, and the performance of interfirm service exchanges: The influence of boundary-spanner closeness. Journal of the Academy of Marketing Science, 33(2), 2005, 217-234.

[36]    Chen, F., et al., Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information. Management Science, 46(3), 2000, 436-443.

[37]    Kleindorfer, P.R. and G.H. Saad, Managing disruption risks in supply chains. Production and operations management, 14(1), 2005, 53-68.

[38]    Parker, G.G. and E.G. Anderson Jr, From buyer to integrator: The transformation of the supply‐chain manager in the vertically disintegrating firm. Production and operations management, 11(1), 2002, 75-91.

[39]    Frohlich, M.T. and R. Westbrook, Demand chain management in manufacturing and services: web-based integration, drivers and performance. Journal of Operations Management, 20(6), 2002, 729-745.