زمان‌بندی حمل و نقل کامیون‌ها در سیستم‌های بارانداز متقاطع چندگانه با پنجره زمانی نرم با در نظر گرفتن عدم قطعیت در پارامترهای زمانی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

2 دانشجوی دکتری تخصصی، دانشکده مدیریت و حسابداری ، گروه مدیریت صنعتی ،واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران

3 گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی

4 استادیار و عضو هیات علمی دانشکده مدیریت و حسابداری، دانشگاه آزاد قزوین

چکیده

استراتژی لجستیک، یک مزیت مهم برای عملیات مدیریت زنجیره تامین است که نیاز به برنامه‌ریزی متمرکز عملیات برای کاهش زمان و تحویل به موقع محصول جهت افزایش سطح رضایتمندی مشتریان را به دنبال دارد. در این مقاله هدف کمینه‌سازی زمان کل عملیات با لحاظ پارامترهای زمانی غیر قطعی و با رویکرد پنجره زمانی نرم در کل زنجیره تامین می‌باشد و با استفاده از مدل برنامه‌ریزی خطی امکانی مدل برنامه ریزی ریاضی فازی را به مدل قطعی تبدیل می‌نماید. از آنجا که مدل مقاله از نوع برنامه‌ریزی خطی عدد صحیح صفر و یک بوده و متعلق به مسائل با پیچیدگی NP-hard است زمان حل مسئله با افزایش ابعاد مساله به شدت و به صورت نمایی افزایش می‌یابد. لذا برای پیدا کردن جواب‌های نزدیک بهینه مساله از الگوریتم های ژنتیک ، الگوریتم شبیه‌سازی تبرید استفاده شده است.سپس این الگوریتم‌ها با معیارهایی با یکدیگر مقایسه شده و الگوریتم برتر در هر معیار مشخص گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Truck transportation scheduling in multi cross-dock systems with a soft time window with considering to uncertainty in time parameters

نویسندگان [English]

  • Ali Mohtashami 1
  • Ali Najafi 2
  • maghsoud amiri 3
  • alireza irajpour 4
1 Department of industrial management, Faculty of management and accounting, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 Ph.d student In Industrial Management, , Faculty of Management and Accounting, Department of Industrial management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
3 Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University
4 Assistant Prof. Faculty of Management and Accounting, Department of Industrial management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

Logistics strategy is an important advantage for supply chain management operations, which requires centralized planning of operations to reduce time and timely delivery of the product to increase the level of customer satisfaction. Cross-dock is an efficient method to control inventory flow that is essential in supply chain management. The other objectives of the cross dock are inventory reduction, increased levels of customer responsiveness and better control of the distribution operation. This paper focuses on the optimization of the transportation scheduling and the planning of the movement inbound and outbound trucks with a soft window, where time parameters are considered uncertain. Therefore, a mathematical model is presented with the goal of minimizing the total time of operation in the supply chain and using the possibility Linear programming model converts the mathematical model into a definite mathematical model. Since the article model is zero and one linear programming type of the integer and belongs to NP-hard issues, the time to solve them increases with increasing problem dimensions. Therefore, genetic algorithm and Simulated Annealing algorithm are used to find optimal solution problems. The parameters used in meta_ heuristic algorithms were determined by Taguchi method with mini-tab software and their optimal values were extracted. Then, according to constant parameters including the number of suppliers, customers, cross-dock, inbound and outbound trucks, and product types, sample problems were generated at three small, meddle and large production levels, and at each level, seven problem samples were generated and total of twenty one issues were solved.

کلیدواژه‌ها [English]

  • Supply Chain Management
  • Cross Docking
  • possibility linear programming
[1]      Mohtashami, A.& Tavana, M & Santos-Arteaga, F.and Fallahian- Najafabadi, A.A novel multiobjective  meta-heuristic model for solving cross-docking scheduling problems, Applied Soft Computing, (31), (2015), 30–47.

[2]      Mohtashami,A .A Novel Dynamic Genetic Algorithm-Based Method for Vehicl Schedulingin Cross Docking Systems with Frequent Unloading Operation, Computers & Industrial Engineering, (90), (2015), 221-240.

[3]      Ponboon, S. Qureshi, A. Taniguchi, A. Evaluation of cost structure and impact of parameters in locationrouting problem with time windows, Transportation Research Procedia (12), (2016), 213 – 226.

[4]      Keshtzaria, M. Naderi, B.and Mehdizadeh, EAn improved mathematical model and a hybrid metaheuristic for truck scheduling in cross-dock problems, Computers & Industrial Engineering, (91), (2015), 197-204.

[5]      yeng, P& chuang,Y.Adaptive Memory ArtiÞcial Bee Colony Algorithm for Green Vehicle Routing with Cross-Docking, Applied Mathematical Modelling,(40), (2016), 9302-9315

[6]      Wisittipanich,W. Hengmeechai, P. Truck Scheduling in Multi-Door Cross Docking Terminal by Modified ParticleSwarm Optimization, Computers & Industrial Engineering, (113), (2017), 793-802

[7]      Asadi, Z. Valipour khatir, M.safaei, A. Modeling and solving Multi-objective Vehicle Routing Problem of Distribution Companies with Fuzzy and Stochastic Constraints (Case Study), Modern Reasearches in Decision Making. (4)1.2019,1-24, (In Persian)

[8]      Mohtasahami, Ali. Fallahian Najafabadi, Ali. Scheduling of truck transportation in the supply chain with consideration of cross docking and using meta- heuristic algorithms, (In Persian)

[9]      Uygun, O. Performance Evaluation of Green Supply Chain Management Using integrated Fuzzy Multi-Criteria Decision Making Techniques, Computers & Industrial Engineering, (102), (2016), 502-511

[10]   Bagher, M. Kassaee, M. Alem Tabriz, A. Zandieh, M. Truck Scheduling in Distribution Systems with Multiple Cross Docks and No Intermediate Storage. Modern Reasearches in Decision Making,(2)4,2018,1-27, (In Persian)

[11]   Dondo, R. and Cerd. J.The heterogeneous vehicle routing and truck scheduling problem in a multi-door cross-dock system. Computers & Chemical Engineering, (76), (2015), 42-62

[12]   Xioa,Y,.Konan,A.The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion,Transportation Research Part E,( 88),(2016),146–166

[13]   Bruglieri, M., Mancini, S., Pezzella, F., Pisacane, O.A Path-based solution approach for the Green Vehicle Routing Problem ,Computers & Operations Research, (103),(2019),109-122

[14]   Torabi, Seyed Ali and Tofighi, Saeedeh, Fuzzy Mathematical Programming, University of Tehran press (2017).

[15]   Lai, Y, J., Hwang, c.L. A new approach to some possibilistic linear programming problems, Fuzzy sets and systems,( 49),(1992),121-133

[16]   Deb, K. Multi-objective optimization using evolutionary algorithms", 1st ed., Wiley(2009)

[17]   Kirk Patrick, S, Gelatt, C.D., Vecchi, M.P. Optimization by Simulated Annealing. Science,(220),4598, (1983),671-680

[18]   Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. Equation of State Calculation by Fast Computing Machines. J. of Chem. Phys., 21, (1953), 1087-1091

[19]   Taguchi, G. Introduction to quality engineering: designing quality into products and processes. (1986).