مدل‌سازی استراتژی‌های نفوذ در بازار با استفاده از شبیه‌سازی مبتنی بر عامل

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی صنایع، واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه مهندسی صنایع، واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه مدیریت بازرگانی، واحد علوم و تحقیقات ، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

پیش‌بینی نتایج معرفی محصول یا برند جدید به بازار، با توجه به هزینه‌های بالای توسعه محصول و تأثیر عمیق شکست احتمالی آن روی آینده سازمان، از دهه‌های گذشته مورد توجه بسیاری از محققان و مدیران حوزه بازاریابی و کسب و کار بوده است. در این میان، وجود عوامل متعدد و متغیر که رفتار بازار را در واکنش به ورود یک محصول یا برند جدید شکل می دهند، پیش بینی را دشوار و دستیابی به مدلی مناسب برای تصمیم گیری درست را با چالش‌های جدی روبرو نموده است. به همین دلیل مدل‌های معرفی شده در این حوزه همچنان در حال توسعه و همگام سازی با مسائل جدید هستند.
در این تحقیق تلاش شده با استفاده از مدل‌سازی عامل بنیان و قابلیتهای ویژه این روش و همچنین با بهره گیری از دستاوردهای تحقیقات گذشته، مدلی ارائه گردد که توان پوشش عوامل مختلف و متغیر بازار را دارا باشد و با ارتقاء توان پیش بینی نتایج ورود برند جدید به بازار، تصمیم گیری در مورد انتخاب استراتژی های نفوذ و توسعه را به حد مطلوب نزدیکتر کند.
نتایج اجرای مدل با داده های ورودی مختلف و بر اساس سیاست‌های از پیش تعیین شده، بررسی و مقایسه گردیدند و سیاست‌های موفق معین شدند. آنچه در پایان تحقیق به دست می آید این است که با تغییر متغیرهای مؤثر بر معرفی محصول یا برند جدید، می‌توان تغییرات اساسی در نتایج ایجاد کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling New Product Launch Strategies within agent-based simulation

نویسندگان [English]

  • Mahdi Khani 1
  • abbas saghaei 2
  • Kambiz Heidarzadeh Hanzaee 3
1 PhD Student, Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Department of Business Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The prediction of the results of introducing a new product into the market is one of the vital issues the organization executives face before investing in marketing activities. The impact of various factors on the market as well as the specific characteristics of the market, depending on the region and its product type, has made it difficult to predict market behavior. In Iran, retailers are effective players, especially in the FMCG market. The objective of this paper was to suggest a model to the marketing managers to predict the result of launching their new product to market considering their special market attributes. Agent-based modeling, as a tool for modeling complicated systems, can be helpful for simulating real-world conditions. In the present paper, agent-based modeling was used to model the market for agents including brand owners, retailers and consumers with particular profit functions. The introduction over a three-year period of a new soft drink in the Iranian market is considered as a case study. The results showed that taking into account the needs of retailers and consumers simultaneously and changing policies based on long-term profitability make the new product diffusion process successful.

کلیدواژه‌ها [English]

  • agent-based modeling
  • new product launch
  • new brand launch
  • retailer
  • Focus strategy
[1]Kiesling, Elmar, et al. "Agent-based simulation of innovation diffusion: a review." Central European Journal of Operations Research 20.2 (2012): 183-230.

[2] Rogers EM (1962). Diffusion of innovations. Free Press, New York

[3]Schramm, M. E., Trainor, K. J., Shanker, M., & Hu, M. Y. (2010). An agent-based diffusion model with consumer and brand agents. Decision Support Systems, 50(1), 234-242

[4] Chatterjee R, Eliashberg J (1990) The innovation diffusion process in a heterogeneous population: a micromodeling approach. Manag Sci 36(9):1057–1079

[5] Milling PM (2002) Understanding and managing innovation processes. Syst Dyn Rev 18(1):73–86

[6] Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl 3), 7280-7287.

[7] Goldenberg J, Libai B, Solomon S, Jan N, Stauffer D (2000) Marketing percolation. Phys A Stat Mech Appl 284(1–4):335–347

[8] Alkemade F, Castaldi C (2005) Strategies for the diffusion of innovations on social networks. Comput Econ 25(1–2):3–23

[9] Delre SA, Jager W, Bijmolt THA, Janssen MA (2010) Will it spread or not? The effects of social influences and network topology on innovation diffusion. J Product Innov Manag 27(2):267–282

[10] Berger T (2001) Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agric Econ 25(2–3):245–260

[11] Heppenstall, A., Evans, A., & Birkin, M. (2006). Using hybrid agent-based systems to model spatially-influenced retail markets. Journal of Artificial Societies and Social Simulation, 9(3).

[12] Kaufmann P, Stagl S, Franks DW (2009) Simulating the diffusion of organic farming practices in two new EU member states. Ecol Econ 68(10):2580–2593

[13] Zhang, T., Gensler, S., & Garcia, R. (2011). A Study of the Diffusion of Alternative Fuel Vehicles: An Agent‐Based Modeling Approach. Journal of Product Innovation Management, 28(2), 152-168

[14] Günther M, Stummer C, Wakolbinger LM, Wildpaner M (2011) An agent-based simulation approach for the new product diffusion of a novel biomass fuel. J Oper Res Soc 62(1):12–20

[15] Kim S, Lee K, Cho JK, Kim CO (2011) Agent-based diffusion model for an automobile market with fuzzy TOPSIS-based product adoption process. Expert Syst Appl 38(6):7270–7276

[16] Fazeli, A., & Jadbabaie, A. (2012, December). Game theoretic analysis of a strategic model of competitive contagion and product adoption in social networks. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on (pp. 74-79). IEEE

[17]Przybyła, P., Sznajd-Weron, K., & Weron, R. (2014). Diffusion of innovation within an agent-based model: Spinsons, independence and advertising. Advances in Complex Systems, 17(01), 1450004.

[18] Stummer, C., Kiesling, E., Günther, M., & Vetschera, R. (2015). Innovation diffusion of repeat purchase products in a competitive market: an agent-based simulation approach. European Journal of Operational Research, 245(1), 157-167.

[19] Xiao, Y., & Han, J. (2016). Forecasting new product diffusion with agent-based models. Technological Forecasting and Social Change, 105, 167-178.‏

[20] Miremadi, A., & Faghanie, E. (2012). An empirical study of consumer buying behavior and its influence on consumer preference in Iranian FMCG market: A case study. International Business and Management, 5(1), 146-152.

[21] Amini, M., Wakolbinger, T., Racer, M., & Nejad, M. G. (2012). Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach. European journal of operational research, 216(2), 301-311.

[22] Rand, W., & Rust, R. T. (2011). Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing, 28(3), 181-193.

[23] Haghighi, M, Hoseinzadeh, M. (2010). Comparing the Tendency of Consumption of Domestic Products in Tehran with Other Countries and Examining its Effect on Products Evaluation and Preference. Management Research in Iran, 2010; 13 (4):103-139

 [24] Salehi, M., Salari, M. (2017). Comparing data mining and fuzzy logic techniques to identify behavior of customers. Modern Research in Decision Making, 2(3), 173-192.

[25] Hossinzadeh, M., Mehregan, M. (2016). Designing a Multi-Methodology Framework for Operations Research using Social Network Analysis. Modern Research in Decision Making, 1(1), 1-26.

[26] Rahmanseresht H, Tayebi Abolhasani A, Rouhani Rad S. Analysis of Scientific Collaboration Networks of Researchers in the Field of Strategic Management in Iran. Management Research in Iran, 2019; 23 (3) :1-27