مدلسازی و حل مسئله مسیریابی تولید چند محصولی مبتنی بر برونسپاری و ریسک تصادف در حمل و نقل

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجو دکتری مهندسی صنایع، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشیار، گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

سازمان هایی که برنامه‌یکپارچه تولید و مسیریابی دارند، هنگامی که برای توزیع از وسایل نقلیه استفاده می‌کنند، گاهی با ترافیک مواجه‌ا‌ند. بنابراین ریسک‌هایی مانند تصادف وجود دارد که منجر به خسارت، از دست دادن کیفیت محصول، تاخیر اجتناب ناپذیر در تحویل و یا حتی اثرات جبران ناپذیر شود که بر هزینه‌ها و زمان خدمت رسانی تاثیر دارد. لذا با در نظر گرفتن ریسک تصادف در مسئله مسیریابی تولید مدل به واقعیت نزدیکتر می‌شود. در این مطالعه یک مدل مسیریابی تولید با دو هدف کاهش هزینه‌ها و ریسک تصادف در حمل ونقل، با در نظر گرفتن برونسپاری، چند محصولی و چند دوره ای پیشنهاد شده است. از آنجاییکه این مسئلهNP-hard می‌باشد، به منظور حل مسئله از الگوریتم ژنتیک رتبه بندی نامغلوب ۲ (NSGA II) استفاده شده است. برای اعتبارسنجی مدل جواب‌های به دست آمده از روش محدودیت اپسیلون در ابعاد کوچک با جواب‌های به دست آمده از الگوریتم مقایسه شده است. همچنین برای اعتبارسنجی الگوریتم پیشنهادی و بررسی کارایی آن در ابعاد بزرگ، نتایج حاصل از NSGA II روی مسائل نمونه در مقایسه با الگوریتم ژنتیک چندهدفه (MOGA) با استفاده از چندین شاخص مورد آزمون قرار گرفته است. نتایج حاکی از آن است که با وجود زمان اجرای کمتر در الگوریتم پیشنهادی، در شاخص پراکندگی الگوریتم NSGA II و در شاخص تعداد جواب‌های لایه پارتو الگوریتم MOGA دارای کارایی مناسب‌تری است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and solving of bi-objective multi-product production routing problem with outsourcing and accident risk in transportation

نویسندگان [English]

  • M. Salehi Sarbijan 1
  • Javad Behnamian 2
1 Phd candidate, Department of Industrial Engineering, Bu-Ali Sina University, Hamadan, Iran, Iran
2 Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University
چکیده [English]

Organizations with integrated production and routing programs sometimes encounter traffic when they use vehicles for distribution. So there are risks such as an accident that could result in damage, loss of product quality, unavoidable delivery delays, or even irreversible impacts on costs and service time. Therefore, by taking account the risk of accident into the production routing problem, the model becomes closer to reality. In this study, a production routing problem with the purpose of reducing costs and the risk of accident in the transportation with outsourcing, multi-product and multi-period, is considered in which the production routing problem combines with the lot sizing and vehicle routing problem according the supplier's inventory management system. Since this is an NP-hard problem, after modeling the problem, to solve it, a Non-dominated Sorting Genetic Algorithm II (NSGA II) has been used. To examine the efficiency of the algorithm, the solutions of ε-constraint method in GAMS obtained in small-size instances have been compared with NSGA II. Finally, to validate the proposed algorithm and evaluate its performance in large-size instances, the results of NSGA II have been compared with multi-objective genetic algorithm using several indices. The obtained results showed that the NSGA II algorithm had better performance.

کلیدواژه‌ها [English]

  • Production routing
  • Outsourcing
  • Accident risk
  • Multi-objective optimization
  • NSGA II
[1] Adulyasak, Y., Cordeau, J.-F. & Jans, R. (2012) “Optimization-based adaptive large neighborhood search for the production routing problem“, Transportation science, Vol. 48(1), pp. 20-45.
[2] Chandra, P. (1993) “A dynamic distribution model with warehouse and customer replenishment requirements“, Journal of the Operational Research Society, Vol. 44(7), pp. 681-692.
[3] Chandra, P. & Fisher, M. L. (1994) “Coordination of production and distribution planning“, European Journal of Operational Research, Vol. 72(3), pp. 503-517.
[4] Fumero, F. & Vercellis, C. (1999) “Synchronized development of production, inventory, and distribution schedules“, Transportation science, Vol. 33(3), pp. 330-340.
[5] Boudia, M., Louly, M. A. O. & Prins, C. (2008) “Fast heuristics for a combined production planning and vehicle routing problem“, Production Planning and Control, Vol. 19(2), pp. 85-96.
[6] Ruokokoski, M., Solyali, O., Cordeau, J.-F., Jans, R. & Süral, H. (2010) “Efficient formulations and a branch-and-cut algorithm for a production-routing problem“, GERAD Technical Report G-2010-66, Vol., pp.
[7] Archetti, C., Bertazzi, L., Paletta, G. & Speranza, M. G. (2011) “Analysis of the maximum level policy in a production-distribution system“, Computers & Operations Research, Vol. 38(12), pp. 1731-1746.
[8] Absi, N., Archetti, C., Dauzère-Pérès, S. & Feillet, D. (2014) “A two-phase iterative heuristic approach for the production routing problem“, Transportation science, Vol. 49(4), pp. 784-795.
[9] Adulyasak, Y., Cordeau, J.-F. & Jans, R. (2015b) “The production routing problem: A review of formulations and solution algorithms“, Computers & Operations Research, Vol. 55, pp. 141-152.
[10] Díaz-Madroñero, M., Peidro, D. & Mula, J. (2015a). Integrated production and routing planning decisions under uncertainty: a case study. Paper presented at the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15).
[11] Adulyasak, Y., Cordeau, J.-F. & Jans, R. (2015a) “Benders decomposition for production routing under demand uncertainty“, Operations Research, Vol. 63(4), pp. 851-867.
[12] Díaz-Madroñero, M., Peidro, D. & Mula, J. (2015b) “A review of tactical optimization models for integrated production and transport routing planning decisions“, Computers & Industrial Engineering, Vol. 88, pp. 518-535.
[13] Kumar, R. S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L. S. & Tiwari, M. (2016) “Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach“, Computers & Industrial Engineering, Vol. 99, pp. 29-40.
[14] Belo-Filho, M., Amorim, P. & Almada-Lobo, B. (2015) “An adaptive large neighbourhood search for the operational integrated production and distribution problem of perishable products“, International Journal of Production Research, Vol. 53(20), pp. 6040-6058.
[15] Hein, F. & Almeder, C. (2016) “Quantitative insights into the integrated supply vehicle routing and production planning problem“, International Journal of Production Economics, Vol. 177, pp. 66-76.
[16] Brahimi, N. & Aouam, T. (2016) “Multi-item production routing problem with backordering: a MILP approach“, International Journal of Production Research, Vol. 54(4), pp. 1076-1093.
[17] Rahimi, M., Baboli, A. & Rekik, Y. (2017). Inventory routing problem for perishable products by considering customer satisfaction and green criteria. In Dynamics in Logistics (pp. 445-455): Springer.
[18] Solyalı, O. & Süral, H. (2017) “A multi-phase heuristic for the production routing problem“, Computers & Operations Research, Vol. 87, pp. 114-124.
[19] Qiu, Y., Ni, M., Wang, L., Li, Q., Fang, X. & Pardalos, P. M. (2018) “Production routing problems with reverse logistics and remanufacturing“, Transportation Research Part E: Logistics and Transportation Review, Vol. 111, pp. 87-100.
[20] Qiu, Y., Wang, L., Xu, X., Fang, X. & Pardalos, P. M. (2018a) “Formulations and branch-and-cut algorithms for multi-product multi-vehicle production routing problems with startup cost“, Expert Systems with Applications, Vol. 98, pp. 1-10.
[21] Qiu, Y., Wang, L., Xu, X., Fang, X. & Pardalos, P. M. (2018b) “A variable neighborhood search heuristic algorithm for production routing problems“, Applied Soft Computing, Vol. 66, pp. 311-318.
[22] Neves-Moreira, F., Almada-Lobo, B., Cordeau, J.-F., Guimarães, L. & Jans, R. (2019) “Solving a large multi-product production-routing problem with delivery time windows“, Omega, Vol. 86, pp. 154-172.
[23] Avci, M. & Yildiz, S. T. (2019) “A matheuristic solution approach for the production routing problem with visit spacing policy“, European Journal of Operational Research, Vol., pp.
[24] Shuang, Y., Diabat, A. & Liao, Y. (2019) “A stochastic reverse logistics production routing model with emissions control policy selection“, International Journal of Production Economics, Vol. 213, pp. 201-216.
[25] Li, Y., Chu, F., Chu, C. & Zhu, Z. (2019) “An efficient three-level heuristic for the large-scaled multi-product production routing problem with outsourcing“, European Journal of Operational Research, Vol. 272(3), pp. 914-927.
[26] Bula, G. A. Prodhon, C. Gonzalez, F. A. Afsar, H. M. & Velasco, N. (2017) “Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation “,Journal of hazardous materials, vol. 324, pp. 472-480.
[27] Bula, G. A. Afsar, H. M. González, F. A. Prodhon, C. & Velasco, N. (2019) “Bi-objective vehicle routing problem for hazardous materials transportation “,Journal of cleaner production, vol. 206, pp. 976-986, 2019.
[28] Behnamian, J & Adabi, F. (2018) "Competitive Production Routing Problem: Modeling, Solving and Valid Inequalities". Modern Research in Decision Making, 3(2), 55-79.
[29] Timajchi, A. Al-e-Hashem, S. M. M. & Rekik, Y. (2019) “Inventory routing problem for hazardous and deteriorating items in the presence of accident risk with transshipment option “, International Journal of Production Economics, 209, 302-315.
[30] Bodin, L. and Golden, B. (1981) “Classification in vehicle routing and scheduling“, Networks, Vol. 11(2), pp. 97-108.
[31] Bérubé, J. F., Gendreau, M., & Potvin, J. Y. (2009) "An exact ϵ-constraint met hod for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits", European journal of operational research, 194(1), 39-50.
[32] Sabouhi, F., Bozorgi-Amiri, A. (2019). A bi-objective mathematical model for emergency evacuation considering heterogeneous fleet of vehicles. Modern Research in Decision Making, 4(1), 119-137.
[33] Taghavifard, S. M. T. Dehghani, M. H. & Aghaei, M. (2015) “The Model for Lot Sizing Problem with Supplier Selection and Solving by NSGA-II (Case Study: Morvarid Panberiz Company)”, Management Research in Iran, 19(2): 65-89.
[34] Maghsoud, A. Mahdi, A. & Nezhadi Mostafa, H. (2014) “Application of multi-level, multi-objective mathematical model to determine the optimal level of effective quality factors in plastic injection quality and using fuzzy dual response surface methodology (Case Study: Movable arm rest Teflon Bush for bus seat)”, Management Research in Iran, 18 (2); 1 -23.
[35] Moura A. (2008) A Multi-Objective Genetic Algorithm for the Vehicle Routing with Time Windows and Loading Problem. In: Bortfeldt A., Homberger J., Kopfer H., Pankratz G., Strangmeier R. (eds) Intelligent Decision Support. Gabler