مساله مکان یابی تک وسیله‎ ای آرمانی فازی تحت تابع زیان نامتقارن لینکس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار،دانشکده علوم ریاضی، دانشگاه صنعتی شاهرود، شاهرود، ایران.

2 دانشیار، دانشکده علوم ریاضی، دانشگاه صنعتی شاهرود، شاهرود، ایران.

3 استادیار، گروه ریاضی و آمار، دانشکده علوم پایه و فنی مهندسی، دانشگاه گنبد کاووس، گنبدکاووس، ایران

چکیده

DOR : 20.1001.1.24766291.1399.5.3.2.7
در این مقاله به مسئله مکان یابی آرمانی با وزن‎های فازی و تحت تابع زیان نامتقارن لینکس پرداخته‎ایم تا توانسته باشیم مشخصه‎های بیشتری از دنیای واقعی را در مدل ارائه شده بررسی نمائیم. هدف این مسئله تعیین مکان یک سرویس دهنده در شعاع آرمانی (فاصله دقیقا مشخصی) تا هر یک از نقاط تقاضا است. در حالت کلی، چنین جوابی همواره موجود نیست. بنابراین کمینه کردن تابع خطای حاصل از فاصله سرویس‌دهنده تا نقطه ایده‌آل مطلوب است. از آنجایی که در بسیاری از موقعیت‎های زندگی واقعی، خطای مثبت و خطای منفی با اندازه‎های یکسان، اغلب مفاهیم متفاوت اقتصادی و مادی دارند، بدین منظور برای اولین بار از تابع زیان نامتقارن لینکس استفاده شده است که بین خطاهای مثبت و منفی با فاصله یکسان تمایز قائل می‎باشد. این مسئله ابتدا در حالت قطعی مورد بررسی قرار گرفته. در این مقاله ابتدا در قالب یک قضیه نشان داده می‌شود که مسئله دارای جواب شدنی است و جواب بهینه مسئله در پوسته گسترش یافته مستطیلی نقاط تقاضا قرار دارد. در ادامه برای تعیین جواب بهینه مسئله، یک الگوریتم گرادیانی شبه-وایزفیلد ارائه شده و با بیان چند قضیه نشان داده می‌شود که این الگوریتم به جواب بهینه مسئله همگرا است. همچنین برای تایید صحت نتایج بدست آمده از این روش، جواب‌های بدست آمده را با الگوریتم فراابتکاری رقابت استعماری نیز مقایسه شده است. در پایان، برای اولین بار مسئله در حالت فازی مدل‌بندی ریاضی شده و جواب‎های آن به کمک الگوریتم ژنتیک سه هدفه با مدل قطعی در قالب یک مثال مقایسه و تحلیل شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Fuzzy Single Facility Goal Location Problems with Asymmetric Penalty Function

نویسندگان [English]

  • Morteza Nazari 1
  • Jafar Fathali 2
  • Nemat Allah Taghi-Nezhad 3
1 Faculty of Mathematical Science, Shahrood University of Technology, Shahrood, Iran, Email: mnazari_math@shahroodut.ac.ir.
2 Associate Professor, Faculty of Mathematical Science, Shahrood University of Technology, Shahrood, Iran
3 Assistant Professor, Department of Mathematics, Gonbad Kavous University, Gonbad Kavous, Iran,
چکیده [English]

In this paper, a fuzzy goal single facility location problem under to asymmetric Linex loss function is discussed. The aim of this paper is to determine the location of a facility center in the ideal radius to each of the demand points. In general, such a response is not always available. Therefore, minimizing the error function obtained from the distance of facility center to the ideal point is desirable. As, in many real-life situations, positive error and negative error of the same size often have different economic and material implications, a asymmetric Linex loss function is used for the first time where distinguishes between positive and negative errors with the same distance. In this paper, first, this problem is first investigated in a definite manner and by proving a theorem it is shown that the problem has a feasible solution and the optimal solution of the problem lies in the expanded rectangular shell of the demand points. In the following, To determine the optimal solution of the problem, a gradient quasi-Weisfield algorithm is presented, and by proposing some theorems, it is shown that this algorithm is convergent to the optimal solution of the problem. Also, to confirm the accuracy of the results obtained from this method, the obtained results are compared with the metaheuristic colonial competition algorithm. Finally, for the first time, the problem is modeled in fuzzy mathematical mode, and using a three-objective genetic algorithm its answers are compared and analyzed with a definite model.

کلیدواژه‌ها [English]

  • Fuzzy Goal location
  • Single Facility
  • Linex Penalty Function
  • Meta-Heuristic
[1] Nazari, M., Fathali, J., Reverse backup 2-median problem with variable coordinate of   vertices,  Journal of  Operational Research and It's Applications, 15 (2),  2018, 63-88.
[2] Abbasi,  F., Tabriz, A. A., Selection of  bank branches location  based on rough set theory – multi choice goal programming, Modern Researches in Decision Making, 2 (1), 2017, 119-148.
[3] Weber, A., Uber den Standort der Industrient, (1929). Tubingen, (1909), English Trans.: Theory of Location of Industries, (C.J., Friedrich, ed., and trans.), Chicago University Press, Chicago, Illinois, (1929).
[4] Brimberg, J., The Fermat-Weber location problem revisited, Mathematical Programming, 71, 1995, 71-76.
[5] Chen, R., Noniterative Solution of Some Fermat-Weber Location Problems, Advances in Operations Research, 2011,  10 pages.
[6] Trinh, M. H., Lee, B.H., and Ahn, H.S., The Fermat-Weber location problem in single integrator dynamics using only local bearing angles, Auto matica, 59, 2015, 90-96.
[7] Mohebbi, N., Rad, A., and Motameni, A., Developing Sustainable Recovery Model Of End-Life Products (Case Study: End-Of Life Vehicle), IQBQ,  22 (2), 2018, 227-249.
[8] Weiszfeld, E., Sur le point par lequel la somme des distances den points donnsest minimum, Tohoku Math, 43, 1937,  355–386.
[9]  Miehle, W., Link-length minimization in networks, Oper. Res., 6, 1958, 232–243.
[10] Iyigun, C., Ben-Israel, A., A generalized weiszfeld method for the multifacility location problem, Oper. Res. Lett., 38, 2010, 207–214.
[11] Fathali, J., Backup multifacility location problem with  norm, OPSEARCH, 52, 2014, 382-391.
[12]  Fathali, J.,  Zaferanieh,  M., and Nezakati, A., A BSSS algorithm for the location problem with minimum square error, Advances in Operations Research, Article ID 212040, 2009, 10 pages.
[13] Jamalian, A., and Fathali, J., Linear programming for the location problem with minimum absolute error, World Applied Sciences Journal, 7, 2009, 1423-1427.
[14] Fathali, J., Jamalian, A., Efficient methods for goal square Weber location problem, Iranian Journal of  Numerical Analysis and Optimization, 7 , 2017, 65-82.
[15] Fathali, J., Nazari, M., Solution of Backup Multifacility Location Problem by Considering the Ideal Radius for each Customer, Journal of New Researches in Mathematics, 5 (21), 2019, 93-104
[16] Soleimani, A., Fathali, J., and Nazari, M., Single facility goal location problems with  norm, Modern Researches in Decision Making, 3 (4), 2019, 125-150.
[17] Taleshian, F., Fathali, J., and Taghi-Nezhad, N. A., Fuzzy majority algorithms for the 1-median and 2-median problems on a fuzzy tree, Fuzzy Information and Engineering, 2018, 1-24.
[18] Soltanpour, A., Baroughi, F. and Alizadeh, B., Intuitionistic fuzzy inverse 1-median  location problem on tree networks with value at risk objective, Soft Computing, 17, 2019, 7843–7852.
[19] Taghi-Nezhad, N., The p-median problem in fuzzy environment: proving fuzzy vertex optimality theorem and its application, Soft Computing, 23 (22) 2019, 11399–11407.
[20] Adel Rastkhiz S E, Mobini Dehkordi A, yadollahi farsi J. Introducing a model for evaluating entrepreneurial opportunities based on fuzzy approach, IQBQ, 2019; 23 (1) ,75-97.
[21] Taleshian, F. and Fathali, J., A mathematical model for fuzzy p-median problem with fuzzy weights and variables, Advances in Operations Research, 2016, 1-13.
[22] Varian, H. R., A Bayesian approach to real estate assessment, in Studies in Bayesian Econometrics and Statistics in Honour of Leonard J. Savage, Amesterdam, North-Holland, 1975.
[23] Arashi, M., Tabatabaey, S. M. M., and Khan, S., Estimation in multiple regression model with elliptically contoured errors under MLINEX loss, Journal of Applied Probablity and Statistics, 3, 2008, 23-35.
[24] Drezner, Zvi., Wesolowsky, G.O., The Weber problem on the plane with some negative weight, Inform, 29 (2), 1991, 87-99.
[25] Gargari, A., Lucas, E. C., Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialist competitive, IEEE Congress on Evolutionary computation, Singapore,  2007.