طراحی مدل مدیریت موجودی توسط تأمین‌کنندگان (VMI) در زنجیره تأمین خودرو برای به حداکثر رساندن گردش موجودی کالا در انبار تولیدکننده (موردمطالعه: شرکت سایپا)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت تولید و عملیات ، دانشکده اقتصاد، مدیریت و علوم اداری، دانشگاه سمنان، سمنان، ایران

2 دانشیار گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران ، ایران

3 استادیار گروه مدیریت صنعتی، دانشکده اقتصاد، مدیریت و علوم اداری، دانشگاه سمنان، سمنان، ایران

4 دانشیار گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه آزاد اسلامی قزوین، قزوین، ایران

چکیده

در مطالعات قبلی، طراحی مدل‌های مدیریت موجودی توسط تأمین‌کنندگان (VMI) بر اساس حداقل هزینه کل زنجیره تأمین بود. در این مقاله، یک روش جدید برای طراحی مدل‌های VMI با هدف بهینه‌سازی گردش موجودی انبار تولیدکننده ایجاد شده است. بر اساس مدل پیشنهادی، هدف ما افزایش حداکثر گردش موجودی همراه با محدودیتِ نداشتن کمبود کالا در خطوط تولید و انطباق با حداقل و حداکثر محدودیت‌های موجودی در انبار تولیدکننده است. روش پیشنهادی در مقایسه با روش های متعارف به حداقل رساندن کل هزینه زنجیره تأمین ساده‌تر و عملی‌تر است. الگوریتم ترکیبی مبتنی بر الگوریتم ژنتیک (GA) با استفاده از بهینه‌سازی ازدحام ذرات (PSO) برای به دست آوردن هر دو توانایی جستجوی مناسب فراگیر و محلی در فضای جواب، برای حل مدل جدید پیشنهاد شده است. به‌عنوان یک مطالعه موردی، اجرای مدل پیشنهادی در زنجیره تأمین شرکت سایپا بهبود در گردش موجودی کالا، کاهش سطح موجودی انبار و کاهش سطح بازپرسازی کالا توسط تأمین‌کنندگان را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a vendor managed-inventory model (VMI) in the automotive supply chain to maximize inventory turnover in producer warehouse – A case study by Saipa Company

نویسندگان [English]

  • Ahmad Beklari 1
  • Hasan Farsijani 2
  • Mohsen Shafiei Nikabadi 3
  • Ali Mohtashami 4
1 Ph.D. Student of Industrial Management Department, Faculty of Economics, Management and Administration Science, Semnan University, Semnan, Iran
2 Associate Professor of Industrial Management Department, Faculty of Management and Accounting, Shahid Beheshti University, Tehran, Iran
3 Assistant Professor of Industrial Management Department, Faculty of Economics, Management and Administration Science, Semnan University, Semnan, Iran
4 Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

In previous studies, the design of the vendor managed inventory (VMI) models was based on minimizing the total cost of the supply chain. In this paper, a new approach for designing VMI models with the aim of optimizing the inventory turnover of the producer warehouse is developed. Based on the proposed model, our objectives are to maximize inventory turnover along with the constraint of lack of shortage of goods in the production lines and also compliance with the minimum and maximum constraints of inventory in the warehouse of the producer which can be simpler and more practical than minimizing the total cost of the supply chain. A hybrid algorithm based on a genetic algorithm (GA) using particle swarm optimization (PSO) is proposed in order to gain both proper global and local search abilities in the solution space for solving the new model. As a case study, implementation of the proposed model in the supply chain of Saipa Company improved the inventory turnover, decreased inventory level and decreased the level of replenishment by suppliers.

کلیدواژه‌ها [English]

  • Supply Chain Management
  • Vendors managed inventory
  • Inventory warehouse turnover
  • genetic algorithm
  • and Particle swarm optimization algorithm
[1] Kolyaei M, Azar A, Amini M, Rajabzadeh Gatari A. “Design of integrated mathematical model for closed-loop supply chain,” Pazhoheshha_E Modiriat Iran, vol. 20, no. 1, pp. 1-32, 2016.

[2] I. D. Anna, “The implementation of Vendor Managed Inventory in the supply chain with simple probabilistic inventory model,” 3rd Bali International Seminar on Science and Technology, BISSTECH 2015, vol. 58. 2016.‏

[3] A. J. Kleywegt, V. S. Nori, and M. W. P. Savelsbergh, “The Stochastic Inventory Routing Problem with Direct Deliveries,” Transp. Sci., vol. 36, no. 1, pp. 94–118, 2002.

[4] E. Khakbazan, S. Chaharsoghi, F. Mokhatab Rafiei, “Presenting an Integrated Value Based Supply Chain Model Considering Financial Ratios in Financial Decisions,” Modern Research in Decision Making, von. 3, no. 1, pp. 113-136. 2018.

[5] A. Mohammadi, M. khalifeh, M. Alimohammadlou, A. Abbasi, M. Eghtesadifard. “Designing Operational and Financial Multi Echelon Supply Chain System in Strategic and Tactical Levels of Decision-Making,” Modern Research in Decision Making, vol. 1, no. 3, pp. 267-297, 2018.

[6] M. Akbari Kaasgari, D. M. Imani, and M. Mahmoodjanloo, “Optimizing a vendor managed inventory (VMI) supply chain for perishable products by considering discount: Two calibrated meta-heuristic algorithms,” Comput. Ind. Eng., vol. 103, no. Vmi, pp. 227–241, 2017.

[7] H. Bani-Asadi and H. J. Zanjani, “Vendor managed inventory in multi level supply chain,” Decis. Sci. Lett., vol. 6, no. 1, pp. 67–76, 2017.

[8] D. S. Bodhankar and D. R. Rangari, “Supply Chain Management - a New Approach of Business Process,” J. INFORMATION, Knowl. Res. Mech. Eng., vol. di, no. 1, pp. 663–667, 2016.

[9] M. Chen, Y. Hsiao, and H. Huang, “Semiconductor Supply Chain Planning With Decisions of Decoupling Point and VMI Scenario,” IEEE Trans. Syst. MAN, Cybern. Syst. Semicond. Trans. Syst. MAN, Cybern. Syst., pp. 1–13, 2016.

[10] S. Krichanchai and B. L. Maccarthy, “the Adoption of Vendor Managed Inventory for Hospital Pharmaceutical,” Int. J. Logist. Manag, vol. 3, no. 28, pp. 755-780, 2016.‏

[11] N. S. Sadeghi J, Mousavi SM, “Optimizing an Inventory Model with Fuzzy Demand, Backordering, and Discount Using a Hybrid Imperialist Competitive Algorithm,” Appl. Math. Model, vol. 0, pp. 1–18, 2016.

[12] D. Escuin, L. Polo, and D. Cipres, “On the comparison of inventory replenishment policies with time-varying stochastic demand for the paper industry,” J. Comput. Appl. Math., no. 309, pp. 424-434, 2015.

[13] A. Mateen, A. K. Chatterjee, and S. Mitra, “VMI for single-vendor multi-retailer supply chains under stochastic demand,” Comput. Ind. Eng., vol. 79, pp. 95–102, 2015.

[14] M. Braglia, D. Castellano, and M. Frosolini, “Safety stock management in single vendor-single buyer problem under VMI with consignment stock agreement,” Int. J. Prod. Econ., vol. 154, pp. 16–31, 2014.

[15] S. H. R. Pasandideh, S. T. A. Niaki, and M. Hemmati Far, “Optimization of vendor managed inventory of multiproduct EPQ model with multiple constraints using genetic algorithm,” Int. J. Adv. Manuf. Technol., vol. 71, no. 1–4, pp. 365–376, 2014.‏

[16] A. Roozbeh Nia, M. Hemmati Far, and S. T. A. Niaki, “A hybrid genetic and imperialist competitive algorithm for green vendor managed inventory of multi-item multi-constraint EOQ model under shortage,” Appl. Soft Comput. J., vol. 30, pp. 353–364, 2015.

[17] J. Sadeghi, S. Sadeghi, and S. T. A. Niaki, “A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: An NSGA-II with tuned parameters,” Comput. Oper. Res., vol. 41, no. 1, pp. 53–64, 2014.

[18] G. Kannan, M. C. Grigore, K. Devika, and A. Senthilkumar, “An analysis of the general benefits of a centralised VMI system based on the EOQ model,” Int. J. Prod. Res., vol. 51, no. 1, pp. 172–188, 2013.

[19] J. Sadeghi, S. M. Mousavi, S. T. A. Niaki, and S. Sadeghi, “Optimizing a multi-vendor multi-retailer vendor managed inventory problem: Two tuned meta-heuristic algorithms,” Knowledge-Based Syst., vol. 50, no. September 2013, pp. 159–170, 2013.‏

[20] M. Ben-Daya, E. Hassini, M. Hariga, and M. M. AlDurgam, “Consignment and vendor managed inventory in single-vendor multiple buyers supply chains,” Int. J. Prod. Res., vol. 51, no. June 2015, pp. 1–19, 2012.

[21] D. Kastsian and M. Monnigmann, “Optimization of a vendor managed inventory supply chain with guaranteed stability and robustness,” Int. J. Prod. Econ., vol. 131, no. 2, pp. 727–735, 2011.

[22] J. Y. Lee and L. Ren, “Vendor-managed inventory in a global environment with exchange rate uncertainty,” Int. J. Prod. Econ., vol. 130, no. 2, pp. 169–174, 2011.

[23] D. D. Achabal, S. H. McIntyre, S. a. Smith, and K. Kalyanam, “A Decision Support System for Vendor Managed Inventory,” J. Retail., vol. 76, no. 4, pp. 430–454, 2000.

[24] K. S. Swan, T. Boone, and R. Ganeshan, Identifying and Managing Programmatic Efficiency Differences across Technology- Based Product Development Capabilities and Uncertainty Environments in : New Directions in Supply-Chain management: Technology, Strategy, and Implementation,  New Directions in Supply Chain Management. AMACOM, New York, pp. 93-124, 2002.‏ ‏

[25] M. Bergvall and N. Björkman, “Dimensioning of inventory levels in a VMI relationship at Atlas Copco Tools AB,” Luleå tekniska universitet, 2007.

[26] D. Aihua, “Optimization of Replenishment Strategy for a VMI-Based Apparel Supply Chain,” Hong Kong polytechnic university, 2006.

[27] L. Bai and Y. Zhong, “Improving Inventory Management in Small Business: A Case Study,” Master Thesis in International Logistics and Supply Chain Management, JÖNKÖPING University, 2008.

[28] Akbari M. “A model for production and inventory control in crisis condition,” Pazhoheshha_E Modiriat Iran, vol. 19, no. 4, pp. 45-70.

[29] J. H. Holland, “Adaptation in natural and artificial systems. An introductory analysis with application to biology, control, and artificial intelligence,” Ann Arbor, MI Univ. Michigan Press, 1975.

[30] J. Stender, T. R. Addis, and S. E. Spenceley, “Principle-Based Engineering and Economic Modelling. ‘,” Parallel Genet. Algorithms, pp. 117–128, 1993.

[31] R. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,” in Proceedings of the Sixth Intemational Symposium on Micromachine and Human Science, 1995, no. 1, pp. 39–43.