ارائه‌ی یک رویکرد جدید تحلیل پوششی داده‌ها با مرزهای کارآ و ناکارآ برای انتخاب تأمین کننده با وجود خروجی‌های نامطلوب و داده‌های نادقیق

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه ریاضی، واحد پارس آباد مغان، دانشگاه آزاد اسلامی، پارس آباد مغان، ایران

2 استاد، گروه ریاضی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

3 استاد، گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

چکیده

انتخاب تأمین کننده در سازمان‌ها نقشی کلیدی ایفا می‌کند، چرا که هزینه‌ی مواد اولیه بخش اصلی هزینه‌ی محصول نهایی را تشکیل می‌دهد. انتخاب یک تأمین کننده‌ی مناسب امروزه یکی از مهم‌ترین تصمیمات بخش خرید است. این تصمیم عموماً به معیارهای مختلفی بستگی دارد. برای مدیریت مؤثر این عمل خرید که از نظر راهبردی حایز اهمیت است، باید روش و معیارهای مناسبی برای مسئله انتخاب شود. این مقاله رویکرد «تحلیل پوششی داده‌ها با مرزهای کارآ و ناکارآ» را برای ارزیابی و انتخاب بهترین تأمین کننده در حضور خروجی‌های نامطلوب و داده‌های نادقیق پیشنهاد می‌کند. تحلیل پوششی داده‌ها با مرزهای کارآ و ناکارآ دو کارآیی را برای تصمیم‌گیری در نظر می‌گیرد: یکی نسبت به مرز کارآیی اندازه‌گیری می‌شود و بهترین کارآیی نسبی یا کارآیی خوشبینانه نامیده می‌شود، و دیگری نسبت به مرز ناکارآیی سنجیده می‌شود و بدترین کارآیی نسبی یا کارآیی بدبینانه نامیده می‌شود. به علاوه، با استفاده از این رویکرد، اندازه‌های عملکرد کلی جدیدی برای نمره‌دهی به تأمین کنندگان در حضور خروجی‌های نامطلوب و داده‌های نادقیق ارائه می‌شود. در مقایسه با تحلیل پوششی داده‌های سنتی، رویکرد تحلیل پوششی داده‌ها با مرزهای کارآ و ناکارآ بهترین تأمین کننده را به درستی و به آسانی شناسایی می‌کند. دو مثال عددی کاربرد رویکرد پیشنهادی را نشان می‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

A data envelopment analysis approach with efficient and inefficient frontiers for supplier selection in the presence of both undesirable outputs and imprecise data

نویسندگان [English]

  • Hossein Azizi 1
  • Ali Reza Amirteimoori 2
  • Sohrab Kordrostami 3
1 1. Instructor, Islamic Azad University, Parsabad-e-Moghan Branch, Parsabad-e-Moghan, Iran
2 Professor, Islamic Azad University, Rasht Branch, Rasht, Iran
3 Professor, Islamic Azad University, Lahijan Branch, Lahijan, Iran
چکیده [English]

Supplier selection plays a key role in the organizations because the costs of the raw materials constitute the main part of the final product cost. Today, selecting a suitable supplier is one of the most important purchasing decisions. It generally depends on various criteria. To effectively manage the strategically-important purchasing activity, suitable methods and criteria must be selected for the problem. This paper proposed a “data envelopment analysis with efficient and inefficient frontiers” approach to evaluate and select the best supplier in the presence of undesirable outputs and imprecise data. The data envelopment analysis with efficient and inefficient frontiers considered two efficiencies for the decision-making: One efficiency was measured with respect to the efficiency frontier and is called the best relative efficiency or the optimistic efficiency. The other one was measured with respect to the inefficiency frontier and is called the worst relative efficiency or the pessimistic efficiency. In addition, this approach was utilized to provide new overall performance measures to score the suppliers in the presence of undesirable outputs and imprecise data. Compared to the traditional approach, data envelopment analysis with efficient and inefficient frontiers approach identified the best supplier more easily and accurately. Two numerical examples were provided to illustrate the application of the proposed approach.

کلیدواژه‌ها [English]

  • Data Envelopment Analysis
  • undesirable outputs
  • imprecise data
  • Supplier Selection
  • optimistic and pessimistic efficiencies

 

[1]    Kokangul A., Susuz Z. (2009) “Integrated analytical hierarch process and mathematical programming to supplier selection problem with quantity discount”, Applied Mathematical Modeling, 33 (3): 1417–1429.

[2]    Lee A.H.I., Kang, H.Y., Hsu C.F., Hung H.C. (2009) “A green supplier selection model for high-tech industry”, Expert Systems with Applications, 36(4): 7917–7929.

[3]    Lin R.H. (2009) “An integrated FANP–MOLP for supplier evaluation and order allocation”, Applied Mathematical Modelling, 33(6): 2730–2736.

[4]    Hsu C.W., Hu A.H. (2009) “Applying hazardous substance management to supplier selection using analytic network process”, Journal of Cleaner Production, 17(2): 255–264.

[5]    Guneri A.F., Yucel A., Ayyildiz G. (2009) “An integrated fuzzy-LP approach for a supplier selection problem in supply chain management”, Expert Systems with Applications, 36(5): 9223–9228.

[6]    Wu D. (2009) “Supplier selection in a fuzzy group setting: a method using grey related analysis and Dempster–Shafer theory”, Expert Systems with Applications, 36(5): 8892–8899.

[7]    Wu D. D., Zhang Y., Wu D., Olson D.L. (2010) “Fuzzy multi-objective programming for supplier selection and risk modeling: a possibility approach”, European Journal of Operational Research, 200(3): 774–787.

[8]    Wu D. (2009) “Supplier selection: A hybrid model using DEA, decision tree and neural network”, Expert Systems with Applications, 36(5): 9105–9112.

[9]    Kumara D., Singh J., Singh O.P. Seema. (2013) “A fuzzy logic based decision support system for evaluation of suppliers in supply chain management practices”, Mathematical and Computer Modelling, 57(11-12): 2945–2960.

[10]  Ventura J. A., Valdebenito V.A., Golany B. (2013) “A dynamic inventory model with supplier selection in a serial supply chain”, European Journal of Operational Research, 230(2): 258–271.

[11]  Farzipoor Saen R. (2009) “Suppliers selection in the presence of both cardinal and ordinal data”, European Journal of Operational Research, 183(2): 741–747.

[12]  Farzipoor Saen R. (2009) “Supplier selection by the pair of nondiscretionary factors-imprecise data envelopment analysis models”, Journal of the Operational Research Society, 60(11): 1575–1582.

[13]  Farzipoor Saen R. (2009) “A decision model for ranking suppliers in the presence of cardinal and ordinal data, weight restrictions, and nondiscretionary factors”, Annals of Operations Research, 172(1): 177–192.

[14]  Azizi H., Jafari Shaerlar A. (2013) “Evaluation and Selection of a Supplier by interval DEA models with Assurance Region: A DEA Approach with Efficient and Inefficient Frontiers”, Journal of Industrial Management, 8(25): 1–16. (In Persian).

[15]  Azizi H. (2012) “A new approach for supplier selection in the presence of imprecise data: DEA with double frontiers”, Management Research in Iran, 16 (2): 129–150. (In Persian).

[16]  Azizi H., Jafari Shaerlar A., Farzipoor Saen R. (2016) “A new approach for considering a dual-role factor in supplier selection problem: DEA with efficient and inefficient frontiers”, Journal of Production & Operations Management, 6(2):129–144. (In Persian).

[17]  Azizi H., Jahed R. (2015) “Suppliers selection in volume discount environments in the presence of both cardinal and ordinal data: A new approach based on double frontiers DEA”, Management Research in Iran, 19(3): 191–217. (In Persian).

[18]  Beliën J., Forcé H. (2012) “Supply chain management of blood products: A literature review”, European Journal of Operational Research, 217(1): 1–16.

[19]  Chai J., Liu J.N.K., Ngai E.W.T. (2013) “Application of decision-making techniques in supplier selection: A systematic review of literature”, Expert Systems with Applications, 40(10): 3872–3885.

[20]  Lu W.M., Lo S.F. (2007) “A closer look at the economic– environmental disparities for regional development in China”, European Journal of Operational Research, 183(2): 882–894.

[21]  Farzipoor Saen R. (2010) “A decision model for selecting appropriate suppliers”, International Journal of Advanced Operations Management, 2(1-2): 46-56.

[22]  Färe R., Grosskopf S., Lovell C.A.K., Pasurka C. (1989) “Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach”, Review of Economics & Statistics, 71(1): 90–98.

[23]  Seiford L.M., Zhu J. (2002) “Modeling undesirable factors in efficiency evaluation”, European Journal of Operational Research, 142(1): 16–20.

[24]  Scheel H. (2001) “Undesirable outputs in efficiency valuations”, European Journal of Operational Research, 132(2): 400–410.

[25]  Hadi Vencheh A., Kazemi Matin R., Tavassoli Kajani M. (2005) “Undesirable factors in efficiency measurement”, Applied Mathematics and Computation, 163(2): 547–552.

[26]  Jahanshahloo G. R., Hadi Vencheh A., Foroughi A. A., Kazemi Matin R. (2004), “Inputs/outputs estimation in DEA when some factors are undesirable”, Applied Mathematics and Computation, 156(1): 19–32.

[27]  Korhonen P.J., Luptacik M. (2004) “Eco-efficiency analysis of power plants: an extension of data envelopment analysis”, European Journal of Operational Research, 154(2): 437–446.

[28]  Jahanshahloo G. R., Hosseinzadeh Lotfi F., Shoja N., Tohidi G., Razavyan S. (2005), “Undesirable inputs and outputs in DEA models”, Applied Mathematics and Computation, 169(2): 917–925.

[29]  Zhang B., Bi J., Fan Z., Yuan Z., Ge J. (2008) “Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach”, Ecological Economics, 68(1-2): 306–316.

[30]  Liang L., Li Y., Li S. (2009) “Increasing the discriminatory power of DEA in the presence of the undesirable outputs and large dimensionality of data sets with PCA”, Expert Systems with Applications, 36(3): 5895–5899.

[31]  Farzipoor Saen R. (2005) “Developing a nondiscretionary model of slacks-based measure in data envelopment analysis”, Applied Mathematics and Computation, 169(2): 1440–1447.

[32]  Farzipoor Saen R. (2009) “A mathematical model for selecting third-party reverse logistics providers”, International Journal of Procurement Management, 2(2): 180–190.

[33]  Wang Y.-M., Greatbanks R., Yang J. B. (2005) “Interval efficiency assessment using data envelopment analysis”, Fuzzy Sets and Systems, 153(3): 347–370.

[34]  Azizi H., Ganjeh Ajirlu H. (2011) “Measurement of the worst practice of decision-making units in the presence of non-discretionary factors and imprecise data”, Applied Mathematical Modelling, 35(9): 4149-4156.

[35]  Wang Y.-M., Chin K.S., Yang J.B. (2007) “Measuring the performances of decision-making units using geometric average efficiency”, Journal of the Operational Research Society, 58(7): 929–937.

[36]  Moore R.E. (1979) “Method and Application of Interval Analysis”, SIAM, Philadelphia.

[37]  Azizi H. (2012) “Efficiency assessment in data envelopment analysis using efficient and inefficient frontiers”, Management Research in Iran, 16(3): 153–173. (In Persian).

[38]  Azizi H., Bahari A., Jahed R. (2014) “A new approach for the selection of advanced manufacturing technologies: A new approach based on double frontiers data envelopment analysis”, Journal of Applied Mathematics, 10: 99–117. (In Persian).

[39]  Azizi H., Wang Y.-M. (2013) “Improved DEA models for measuring interval efficiencies of decision-making units”, Measurement, 46(3): 1325–1332.

[40]  Khalili-Damghani K., Tavana M., Haji-Saami E. (2015) “A data envelopment analysis model with interval data and undesirable output for combined cycle power plant performance assessment”, Expert Systems with Applications, 42(2): 760–773.

[41]  Akarte M.M., Surendra N.V., Ravi B., Rangaraj N. (2001) “Web based casting supplier evaluation using analytical hierarchy process”, Journal of the Operational Research Society, 52(5): 511–522.