رویکردی نوین از کاربرد مدل‌های تصمیم‌گیری چند معیاره در طبقه‌بندی مشتریان اعتباری بانک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد گروه مدیریت صنعتی، دانشکده علوم اقتصادی و اداری، دانشگاه مازندران، مازندران، ایران

2 دانشیار گروه مدیریت صنعتی، دانشکده علوم اقتصادی و اداری، دانشگاه مازندران، مازندران، ایران

چکیده

همواره مهم‌ترین عامل در تعیین وضعیت اعتباری مشتریان، بررسی ریسک اعتباری آن‌ها بوده است. در گذشته ریسک اعتباری غالبا با قضاوت شهودی تعیین می‌گردید که در مقایسه با روش‌های آماری و هوش مصنوعی که اخیرا مورد توجه قرار گرفته‌اند ازکارایی کمتری برخوردار بوده است. این در حالی است که بکارگیری روش‌های آماری، مستلزم توزیع مشخص داده‌ها می‌باشد و از طرف دیگر استفاده از روش‌های هوش مصنوعی نیز مستلزم محاسبات پیچیده، هزینه‌بر بوده و مدل‌های ارائه شده از آن نیز غیرقابل تفسیر و تحلیل است. از این رو مقاله حاضر سعی دارد با استفاده از رویکرد جدیدی از بکارگیری مدل‌های تصمیم‌گیری چند معیاره، ضمن کاهش پیچیدگی محاسبات و عدم نیاز به فرض خاصی برای داده‌ها، به طبقه‌بندی مشتریان اعتباری بپردازد. در تحقیق حاضر، رویکرد C-TOPSIS که بر پایه روش TOPSIS می‌باشد به عنوان رویکردی جدید از کاربرد فنون تصمیم‌گیری چندمعیاره، برای طبقه‌بندی مشتریان اعتباری بانک بکارگرفته شد. برای سنجش اعتبار رویکرد جدید C-TOPSIS، عملکرد این مدل با عملکرد مدل کلاسیک رگرسیون لجستیک در تشخیص وضعیت اعتباری مشتریان شعب بانک سینا در فاصله زمانی سال 1388-1392 مورد مقایسه قرار گرفت. نتایج نشان داد که مدل C-TOPSIS با دقت کل 8/58% عملکرد بهتری در مقایسه با رگرسیون لجستیک با دقت 4/54% داشته است و خطای نوع اول و دوم در C-TOPSIS نیز به میزان قابل‌ملاحظه‌ای نسبت به روش دیگرکاهش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

A New Approach of applying multi criteria decision making models for classifying the credit customers of bank

نویسندگان [English]

  • Narjes Ghasemnia Arabi 1
  • Abdolhamid Safaei Ghadikolaei 2
1 MSc. Industrial Management, Faculty of Economics and Administrative Sciences, University of Mazandaran, Mazandaran, Iran
2 Associate Professor, Department of Industrial Management, Faculty of Economics and Administrative Science, University of Mazandaran, Mazandaran, Iran
چکیده [English]

Evaluating the credit risk has been the most important factor in determining the customer's credit status. In the past, credit risk often determined by intuitive judgment that was inefficient compared to statistical and artificial intelligence methods which recently have been considered. Whereas the use of statistical methods requires specific data distribution, on the other hand use of artificial intelligence requires complex and costly calculations, and its obtained models are not interpretable. Hence, this paper attempts to use a new approach of applying multi criteria decision making models while reducing the computational complexity and lack of need for specific assumption for data to classify the credit customers. In this study C-TOPSIS approach that is based on the TOPSIS technique was used as a new approach of applying MADM for classifying the credit customers of bank. To assess the validity of C-TOPSIS approach, the performance of this method was compared to the performance of logistic regression model in credit status detection of Sina bank customers in the period 1388-1392. The results indicated that C-TOPSIS model has more accuracy (58.82 %) than logistic regression model (54.4%), in fact Type-I error and Type-II error of C-TOPSIS significantly decreased compared to other method

کلیدواژه‌ها [English]

  • multi-criteria decision making
  • Logistic regression
  • Credit Risk Evaluation
  • C-TOPSIS Method

[1]     İçY. T. (2012) "Development of a credit limit allocation model for banks using an integrated Fuzzy TOPSIS and linear programming", Expert Systems with Applications, 39(5): 5309-5316.

[2]     BekhetH., EletterS.)2012("Credit risk management for the Jordanian commercial banks: A business intelligence approach", Aust. J. Basic Appl. Sci. 6(9):188–195.

[3]     BumacovV., AshtaA. (2011) "The conceptual framework of credit scoring from its origins to microfinance", In Second European Research Conference on Microfinance, Groningen, The Netherlands, June 2011.

[4]     FogartyD. J. (2012) "Using genetic algorithms for credit scoring system maintenance Ffunctions", International Journal of Artificial Intelligence & Applications, 3(6(.

[5]     AbdouH. A., AlamS. T., MulkeenJ. (2014) "Would credit scoring work for Islamic finance? A neural network approach", International Journal of Islamic and Middle Eastern Finance and Management, 7(1): 112-125.

[6]     NiculaI. (2013) "Some aspects concerning the measurement of credit risk", Procedia Economics and Finance, 6: 668-674.

[7]     DimitriuM., Avramescu E.A., CaracotaR. C. (2010) "Credit scoring for individuals", Economia.Seria Management, 13(2): 361-377.

[8]     LiX. L., ZhongY. (2012) "An overview of personal credit scoring: techniques and future work", International Journal of Intelligence Science, 2: 181-189.

[9]     AzarA., AfsarA., AhmadiP. (2007) "Comparison of classical and artificial intelligence methods in predicting stock price index and designing hybrid model", Management Research in Iran (Human Sciences MODARES), 10(4): 1-16, (in Persian).

[10] Marques A. I., García V., Sanchez J. S. (2012) "A literature review on the application of evolutionary computing to credit scoring", Journal of the Operational Research Society, 64(9): 1384-1399.

[11] Fensterstock A. L. B. E. R. T. (2005) "Credit scoring and the next step", Business Credit, 107(3): 46-49.

[12] Vukovic S., Delibasic B., Uzelac A., Suknovic M. (2012) "A case-based reasoning model that uses preference theory functions for credit scoring", Expert Systems with Applications, 39(9): 8389-8395.

[13] Thomas L. C., Edelman D. B., Crook J. N. (2002)Credit scoring and its applications, Siam.

[14] Zhu X., Li J., Wu D., Wang H., Liang C. (2013) "Balancing accuracy, complexity and interpretability in consumer credit decision making: A C-TOPSIS classification approach", Knowledge-Based Systems, 52: 258-267.

[15] Mansouri A., Azar A. (2002) "Designing and explanation of efficient model for banking facilities allocation by neural networks approach, logistic and linear regression", Management Research in Iran (Human Sciences MODARES), 6(3):125-146, (in Persian).

[16] Abdou H., El-Masry A., Pointon J., Abdou H., El-Masry A., Pointon J. (2007) "On the applicability of credit scoring models in Egyptian banks", Banks and Bank Systems, 2(1): 4-20.

[17] Kurum E., Yildirak K., Weber G. W. (2012) "A classification problem of credit risk rating investigated and solved by optimization of the ROC curve", Central European Journal of Operations Research, 20(3): 529-557.

[18] Yap B. W., Ong S. H., Husain N. H. M. (2011) "Using data mining to improve assessment of credit worthiness via credit scoring models", Expert Systems with Applications,38(10): 13274-13283.