پیش بینی میزان ناب بودن یک سیستم تولیدی با درنظرگرفتن هم زمان توابع مطلوبیت جزئی شاخص ها (مطالعه موردی: شرکت نساجی )

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای تخصصی، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران

2 استادیار، گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران

چکیده

بررسی ناب بودن سیستم های تولیدی، هم چون دیگر پروژه ها تابع برخی مولفه های کمی و قابل اندازه گیری همچون زمان حمل و نقل صفر، معیوبی صفر و غیره است که این ضرایب و نسبت ها قابل استخراج و محاسبه هستند. در پژوهش حاضر، عملیاتی کردن مفهوم تولید ناب و پیش بینی میزان ناب بودن یک سیستم تولیدی دنبال می شود. به کمک این مدل می توان درجه ناب بودن شرکت های تولیدی را با تمرکز بـر تعهـدات مدیریت ارزیابی کرد و سطح ناب بودن در آینده را نیز باتوجه به تغییرات در شاخص های تاثیرگذار پیش بینی نمود. تصمیم گیری میزان مطلوبیت، پس از بررسی شرایط استقلال شاخص ها، به کمک فرم ترکیب خطی چندگانه محاسبه می شود. بدین ترتیب، توابع مطلوبیت جزئی همه شاخص ها بطور هم زمان و با فرض خطی بودن درنظر گرفته می شوند. به منظور محاسبه توابع جزئی از افراد خبره در یک شرکت نساجی کمک گرفته شده است. در نهایت با استفاده از مدل بدست آمده میزان ناب بودن سیستم تولیدی در قالب یک تابع ریاضی غیر خطی ارائه می گردد تا بدینوسیله ابزاری برای تصمیم گیری بهتر در شرایط پیچیده محیطی فراهم شود.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting the leanness of a manufacturing system by considering simultaneous partial utility functions of indices (Case Study: Textile Company )

نویسندگان [English]

  • mahbube saeedi 1
  • amir azizi 2
1 PhD Student, Department of Industrial Engineering, Faculty of Industrial Engineering, Islamic Azad University, Research Sciences Branch, Tehran, Iran
2 Assistant Professor, Department of Industrial Engineering, Faculty of Industrial Engineering, Islamic Azad University, Research Sciences Branch, Tehran, Iran
چکیده [English]

Investigating the leanness of manufacturing systems, like other projects, is subject to some quantifiable and measurable components such as zero defect, zero transit time and so on, these coefficients and ratios can be extracted and calculated. In the present study, the operation of the concept of lean production and predicting the leanness of a production system is followed. With the help of this model, the degree of leanness of manufacturing companies can be assessed by focusing on management commitments and the level of leanness in the future can be predicted according to changes in effective indicators. The utility of the decision is calculated using the multiple linear combination form after examining the independence conditions of the indicators. Thus, the partial utility functions of all indices are considered simultaneously and assumed to be linear. In order to calculate the partial functions of experts in a textile company, help has been obtained. Finally, using the obtained model, the degree of leanness of the production system is presented in the form of a nonlinear mathematical function, thus providing a tool for better decision making in complex environmental conditions.

کلیدواژه‌ها [English]

  • Lean production
  • Multi-criteria utility function
  • Group decision making
[1]      Samaneh Doshmangir, (2013), "Lean Supply Chain with Competitiveness Approach", Second National Conference on New Management Sciences, Gorgan, Hakim Jorjani Non-Profit Higher Education Institute.
[2]      Hosseini Zahra and Kazemi Mostafa, (2015), "Comparison of the results obtained by direct extraction of the utility function and linear-approximate estimates of it in solving multi-criteria decision models (Case study: choosing the type of building structure)", Journal of Research In operations in its applications, twelfth year, fourth issue, pp. 28-15
[3]      Salari Anahita, Farsijani Hassan, Hamidizadeh Mohammadreza and Dori Nokourani Behrooz, (2013), "Prioritization of Lean Production Factors with Interpretive Structural Approach (Case Study: Automotive Industry Supply Chain)", Management Research in Iran, Volume 18 , Number 2, pp 107-126
[4]      Womack, J.P. Daniel, D.T. Roos, D. (1990) The Machie That Changed The World Radnejad, A, Nab Andishan, Tehran, 1392, 320.
[5]      Mottaqi, Hayedeh, Ghadrdan, Akbar, (2015), Reduce production delivery time using flow mapping Value and simulation, Management Researches in Iran, Volume 18, Number 4, pp. 161-181.
[6]      Asgharpour, Mohammad Javad (2011), "Multi-Criteria Decision Making", 10th Edition, Tehran, Tehran University Press
[7]      Shoala, Mehdi, Ghasemi, Ahmad Reza, Shahbazi, Meysam, (2018), Identification and morphological analysis of vital aspects of development A new product in the passenger car industry, Management Researches in Iran, Volume 22, Number 2, pp. 153-177.
[8]      Tiwari, Prashant, Sadeghi, Javad, Eseonu, Chinweike, (2020), A Sustainable Lean Production Framework with a Case Implementation: PracticeBased View Theory, Journal of Cleaner Production, Volume 277, Issue 20
[9]      Rasti Mohammad Reza, Ekhtiari Mostafa, (2011), "Group Decision Making for Customer Credit Rating", Sepah Bank Magazine, pp. 2
[10]   Seyed Hosseini Seyed Mohammad, Bayat Turk Amir. (2004), "Evaluation of Lean Production Factors in Custom Discontinuous Production Organizations (Case Study: Sadid Industrial Group)" Lecturer of Humanities, Summer 2005, Volume 9, Number 2, Consecutive 39.
[11]   Asadi Saeed, Qaraei Abolfazl and Panahi Hanieh, (2011), "Evaluation of Lean Production Factors in the Dough Production Process of Milk Factory", Journal of Food Industry Research, Volume 21, Number 4
[12]   Hoshyar Navid and Sadegh Amal Nik Morteza, (2011), "Determining the degree of purity using dimensional analysis methods of hierarchical analysis process and fuzzy TOPSIS (case study: Rose Chimney Assembly Company)", Quarterly Journal of Industrial Management, Faculty of Science Humanities Islamic Azad University, Sanandaj Branch, Year 6, No. 17
[13]   Siamak Baradaran, Mohammad Reza Daraee and Fattahi Davood, (2015), "Assessing the level of readiness of Iran Transform Company for the implementation of lean production system", Faculty of Management, University of Tehran, Volume 7, Number 2.
[14]   Pouya Alireza, Soltani Fasqandis Gholamreza, (2015), "A Model for Evaluating Lean Production in Small and Medium Industries Using a Combination of Confirmatory Factor Analysis, Clustering and PROMOTEE Techniques", Industrial Management Studies, Volume 13 Number 37.
[15]   Feqhhi Farahmand Nasser, (2017), "A Model for Evaluating Lean Production in Small and Medium Industries Using a Combination of Confirmatory Factor Analysis Methods, Clustering and LINMAP Technique (Study of Small, Medium Industries, Basic and Factory Metals)", 10th Year Productivity Management , Issue 40.
[16]   Tadris Hasani, Masumeh, Rahmansereaht, Hossein, (2020), Provide a mathematical model to determine decision-making styles and Improving its effectiveness in the face of data uncertainty, Modern Researchs in Decision Making, Volume 5, Number 2, pp. 1-20.
[17]   Da wan, H and Chen, F. (2008) A leanness measure of manufacturing systems for quantifying impacts of lean initiatives. Journal International Journal of Production Research Volume 46, Issue 23.
[18]   Vinodh, S  and Chintha, S.K . (2009) Leanness assessment using multi-grade fuzzy approach, International Journal of Production Research,  Volume 49,  Issue 2.
[19]   Vinodh, S and  Balaji, S.R. (2010) Fuzzy logic based leanness assessment and its decision support system, International Journal of  Production Research, Volume 49,  Issue 13.           
[20]   Kumar, N., Kumar, S., Haleem, A. and Gahlot, P. (2013) Implementing Lean Manufacturing System: ISM Approach, Journal of Industrial Engineering and Management JIEM, Volume 6, No 4 .pp. 996-1012.
[21]   Raja,  Z.,  Rasi, R.M., Rakiman, U.S.  and  Fauzi Bin Ahmad,  M.d. (2016)  Relationship Between Lean Production and Operational Performance in the Manufacturing Industry, IOP Conf. Series: Materials Science and Engineering,Volume 83conference 1.
[22]   Dos, G. and Gérson, T. (2018) Developing an instrument to measure lean manufacturing maturity and its relationship with operational performance, Journal Total Quality Management & Business Excellence, Volume 29. Issue 9-10.
[23]   Oleghe O., Salonitis K. (2018) Leanness Assessment Tools and Frameworks. In: Davim J. (eds) Progress in Lean Manufacturing. Management and Industrial Engineering. Springer, Cham.
[24]   Ayouk, Ashkan, (2019), Workflow scheduling in and out of lean cells with Teaching-learning optimization algorithm approach, Modern Researchs in Decision Making, Volume 3, Number 4, pp. 153-175.