ارائه رویکرد تلفیقی تصمیم‌‌گیری چندشاخصه و چندهدفه برای انتخاب تأمین‌‌کننده و مونتاژگر در زنجیره تأمین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی صنایع، دانشگاه تربیت مدرس، تهران، ایران

2 دانشجوی دکتری، دانشکده مهندسی صنایع، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 دانشیار، دانشکده مهندسی صنایع، دانشگاه تربیت مدرس، تهران، ایران

چکیده

کمینه کردن هزینه و دستیابی به بیشینه سطح کیفیت محصول، ازجمله عوامل کلیدی در موفقیت زنجیره تأمین است. شبکه زنجیره تأمین با چهار سطح (چند تأمین‌کننده، چند مونتاژگر میانی، یک مونتاژگر نهایی و یک خرده‌‌فروش) و با تولید تک‌‌محصولی متشکل از 4 جزء در نظر گرفته شده است. در این تحقیق علاوه بر انتخاب تأمین‌‌کننده که در اکثر مقالات انجام‌شده، انتخاب مونتاژگر و انبار جهت ذخیره‌سازی محصولات نهایی نیز انجام می‌‌گیرد. با توجه به اینکه مونتاژ محصولاتی مثل خودرو، تراکتور و... در چند مرحله انجام می‌‌گیرد، لذا در این تحقیق مونتاژگران به دو گروه مونتاژگران میانی و نهایی تقسیم شده است. هر جزء از محصول، توسط مونتاژگران میانی مونتاژ شده و برای مونتاژ نهایی به مونتاژگر نهایی ارسال می‌‌شود. در این مقاله رویکرد تلفیقی برای انتخاب مونتاژگران میانی بر مبنای تصمیم‌‌گیری چندشاخصه با روش تاپسیس و انتخاب تأمین‌‌کنندگان بر مبنای تصمیم‌‌گیری چندهدفه با دو هدف کمینه‌‌سازی هزینه و بیشینه‌‌سازی کیفیت و با روش چبیشف آرمانی ارائه شده است. معیارهای در نظر گرفته‌شده برای مونتاژگران میانی شامل هزینه، کیفیت، زمان ارسال و وارانتی است که وزن این معیارها با روش ‌‌آنتروپی تعیین می‌‌شود. کارایی رویکرد پیشنهادی با‌‌ مثال‌‌ عددی بررسی شده و جواب‌ها در حالت تک‌‌هدفه و دو هدفه مقایسه شده‌‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

An Integrated approach based on MADM and MODM for supplier selection and assembler selection in supply chain management

نویسندگان [English]

  • nadia rasouli 1
  • fatemeh marandi 2
  • Nasim Nahavandi 3
1 Phd student, Faculty of industrial engineering,Tarbiat Modares university, Tehran, Iran.
2 Phd student, Faculty of industrial engineering, AmirKabir university of technology, Tehran, Iran.
3 Associate Professor, Faculty of industrial engineering,Tarbiat Modares university, Tehran, Iran.
چکیده [English]

Minimization of costs and maximization of product quality are key factors for success in a supply chain network (SCN).The SCN is considered four echelons: supplier‌‌s, ‌‌middle assemblers, final assembler and retailers that supply a single type product consists of four components. In this paper in addition to the supplier selection, the assemblers and warehouses are selected. The assembly process of the products such as automobile, tractor, consist of multiple stage, therefore in this paper, the assemblers are divided in two groups: multiple middle assemblers (which assemble the component of the product), a final assembler (assembles the final product). In this paper an integrated approach for middle assemblers selection based on multi attribute decision making (MADM) and suppliers selection  based on multi objective decision making (MODM) is proposed.‌‌ First the weight of the attributes (cost, ‌‌quality, ‌‌delivered‌‌ time and warranty) is determined by ‌‌‌‌ENTROPY‌‌ method and then the middle‌‌ assemblers are selected by TOPSIS method. The model consists of two objectives: minimization of costs and maximization of quality which is solved by‌‌‌‌‌‌ CHEBYSHEV ‌‌goal programming to select suppliers. Application‌‌ of proposed method is shown by numerical example and optimal solutions have been compared considering one objective and two objectives.

کلیدواژه‌ها [English]

  • Supplier Selection
  • assembler selection
  • multi attribute decision making
  • multi objective decision making

[1] Braziotis, Ch., Bourlakis, M., Rogers, H., Tannock, J. “Supply chains and supply networks: distinctions and overlaps”. Supply chain management: An International Journal, vol. 18, no. 6, pp. 9-20, 2013.

[2] Shaligram, P. “A two objective model for decision making in a supply chain”. Journal of production economics, vol. 111, pp. 378-388, 2007.

[3] Rabieh, M., Azar, A., Modarres Yazdi, M., Fetanat Fard Haghighi, M. “Designing a multi-objective robust multi-sourcing mathematical model. An approach for reducing the risk of supply chain (Case study: Supply Chain of IRAN KHODRO Company)”. Industrial Management's Perspective, vol. 1, pp. 57-77, 2011.

[4] Ghodsypour S.H., O'Brien C. “A decision support system for suppleir selection using integrated analytic hierarchy process and linear programing”. International Journal of Production Economics, vol. 57, pp. 199-212, 1998.

[5] Rao, C., Xiao, X., Goh, M., Zheng, J., Wen, J. “ Compound mechanism design of supplier selection based on multi-attribute auction and risk management of supply chain”. Computers & Industrial Engineering, vol. 105, pp. 63-75, 2017.

 [6] Erginel, N, Gecer, A. “Fuzzy multi-objective decision model for calibration supplier selection problem”. Computers & Industrial Engineering, vol. 102, pp. 166-174, 2016.

[7] Dickson, G. “An Analysis of Vendor Selection Systems and Decisions”. Journal of Purchasing, vol. 21, pp. 28-41, 1996.

[8] Ghodsypour, S.H., O’Brien, C. “A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming”. Journal of International and Production Economics, vol. 56, pp.199–212, 1998.

[9] Mafakheri, F., Breton, M, Ghoniem, A. "Supplier selection-order allocation: A two-stage multiple criteria dynamic programming approach”. Journal of Production Economic, vol. 132, pp. 52-57, 2011.

[10] Ghodsypour, S.H., O’Brien, C. “The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity constraints”. Journal of International Journal of Production Economics, vol.73, pp. 15–27, 2001.

[11] Hong, G.H., Park, S.C., Jang, D.S., Rho, H.M. “An effective supplier selection method for constructing a competitive supply-relationship”. Journal of Expert Systemswith Applications, vol. 28, pp.629–639, 2005.

[12] Talluri, S. “A buyer–seller game model for selection and negotiation of purchasing bids”. Journal of European Journal of Operational Research, vol. 143, pp.171-180, 2002.

[13] Saen, R.F. “A decision model for selecting technology suppliers in the presence of nondiscretionary factors”.  Applied Mathematics and Computation, vol. 181, pp.1609–1615, 2006.

[14] Ross, A., Buffa, F.P., Droge, C., Carrington, D. “Supplier evaluation in a dyadic relationship: An action research approach”. Journal of Business Logistics, vol. 27, pp. 75–102, 2006.

[15] Ha, S.H., Krishnan, R. “A hybrid approach to supplier selection for the maintenance of a competitive supply chain”. Expert Systems with Applications, vol. 34, pp. 1303–1311, 2008.

[16] Demirtas, E.A., Ustun. O. “AN integrated multi-objective decision making process for supplier selection and order allocation”. OMEGA-International Journal of Management Sicence, vol. 36, pp. 76-90, 2008.

[17] Scott, J., Ho, W., Dey, P., Talluri, S. “A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments”. International Journal of Production Economics, vol. 166, pp. 226-237, 2015.

[18] Asadabadi, M.A. “A customer based supplier selection process that combines quality function deployment, the analytic network process and a Markov chain”.  European Journal of Operational Research, vol. 263, pp. 1049-1062, 2017.

[19] Shaw, K., Shankar, R., Yadav, A., S., Thakur, L.S. “Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain”. Expert System With Application, vol. 39, pp. 8182-8192, 2012.

[20] Daneshvar Rouyendegh, B., Saputro, T. “Supplier Selection Using Integrated Fuzzy TOPSIS & MCGP: A Case Study”.Procedia-Social and Behavioral Sciences, vol. 116, pp. 3957–3970, 2014.

[21] Ayhan, M.B., Klic, H.S. “A two stage approach for supplier selection problem in multi-item/multi-supplier environment with quantity discounts”. Computers & Industrial Engineering, vol. 85, pp. 1–12, 2015.

[22] Erginel, N., Gecer, I. “Fuzzy multi-objective decision model for calibration supplier selection problem”. Computers & Industrial Engineering, vol. 102, pp. 166–174, 2016.

[23] Kooliaei, M., Azar, A., Amini, M.R., Rajabzadeh, A. “Designing integrated mathematical model in closed-loop supply chain”. Management Researches in Iran, vol. 20, no. 1, pp. 1-32, (In Persian), 2016.

[24] Safaei, A.H., Tabibi, M.R., Hajiabadi, F. “Compound Method Approach of Fuzzy ANP-DEMATEL for Making Preference of Green Supplier Performance Assessment Criteria (Case Study: Iran Heavy Diesel Company)”. Management Researches in Iran, vol. 17, no. 3, pp. 129-149, (In Persian), 2013.

[25] Govindan, K., Darbari, J.D., Agarwal, V., Jha, P.C. “Fuzzy multi-objective approach for optimal selection of suppliers and transportation decisions in an eco-efficient closed loop supply chain network”. Journal of Cleaner Production, vol. 165, pp. 1598-1619, 2017.

[26] Babaee, L., Rabieh, M., Nikbakhsh, E., Esmaeili, M. “Multi- Objective Mathematical Model for Green Supplier Selection (Case Study: Supply Chain of IRAN KHODRO Company”. Modern Researchers in Decision Making, vol. 2, no. 2, pp. 51-83, (In Persian), 2017.