خوشه‌بندی کارگاه‌های صنعتی با استفاده از رویکرد ترکیبی داده‌کاوی و تصمیم‌گیری چندمعیاره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مدیریت، دانشکده علوم اجتماعی و اقتصادی، دانشگاه الزهرا (س)، تهران، ایران

2 استادیار، گروه مدیریت، دانشکده مهندسی صنایع و مدیریت، دانشگاه غیاث‌الدین جمشید کاشانی، قزوین، ایران

چکیده

در دهه اخیر، توانایی بشر برای تولید و ذخیره داده‌ها به‌سرعت افزایش یافته است. با افزایش حجم داده‌های ذخیره‌شده، نیاز به روشی که بتوان با استفاده از آن به تحلیل اطلاعات و دانش موجود در داده‌ها پرداخت بیشتر از پیش احساس می‌شود. فنون داده‌کاوی و روش‌های تصمیم‌گیری چند شاخصه در دهه‌های اخیر هرکدام به شکلی کمک‌رسان مدیران در عرصه تصمیم‌گیری بوده‌اند. در پژوهش حاضر، با تلفیق فرآیند داده‌کاوی و روش‌های تصمیم‌گیری چند‌شاخصه، روشی برای خوشه‌بندی کارگاه‌های صنعتی ارائه شده است. در روش پیشنهادی، ابتدا فرآیند داده‌کاوی بر اساس روش‌های تجزیه‌وتحلیل سلسله مراتبی، K-means و شبکه عصبی کوهونن صورت گرفته و سپس عملکرد مدل طراحی‌شده جهت تعیین تعداد خوشه بهینه با شاخص‌های اعتبارسنجی مجموع خطای مربعی و واریانس بین خوشه‌ای سنجیده شده است. بخش صنایع غذایی به‌عنوان مورد مطالعاتی پژوهش موردبررسی قرار گرفته و بر اساس یافته‌های به‌دست‌آمده، چهار خوشه به‌عنوان تعداد خوشه بهینه کارگاه‌های صنعتی این بخش معرفی شده است. خوشه‌های به‌دست‌آمده بر اساس متغیرهای توزیع جمعیت، سطح درآمد و ارزش‌افزوده فعالیت‌های صنعتی در خوشه‌ها نام‌گذاری شد‌ه‌اند و در پایان، پیشنهاد‌هایی در دو بخش کاربردی و پژوهشی برای تصمیم‌گیرندگان و سیاست‌گذاران این صنعت و سایر محققان این حوزه ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Workshops Clustering Using a Combination Approach of Data Mining and MCDM

نویسندگان [English]

  • Ameneh Khadivar 1
  • Fatemeh Mojibian 2
1 Associate Professor
2 Assistant Professor, Management, Industrial Engineering and Management Faculty, Ghiaseddin Jamshid Kashani University, Ghazvin, Iran.
چکیده [English]

In recent decade, humans' ability have rapidly increased in the way of producing and storage of data. By increasing the volume of data stored, the needs for a method by which information and knowledge resources within the data could be analyzed is sensed. Multi-criteria decision making methods and data mining techniques in recent decades helped managers in their decision making process. In this study, a method has been proposed for workshops clustering by combining data mining and MCDM approaches. In the proposed method, first data mining is conducted based on the AHP, K-means and Kohonen neural network approaches, then the performance of designed model is measured by validation indices like SSE and variance between cluster methods in order to determine optimal number of clusters. The food industry has been analyzed as a case study and based on the obtained results, four clusters as the optimal number of clusters have been introduced. The obtained clusters are named based on the variables of population distribution, income, value-added industry and industrial activities in the clusters. Finally, the suggestion is proposed in two sections of practical and research for decision and policy makers in industry and the other researchers in this field.

کلیدواژه‌ها [English]

  • Data Mining
  • Clustering
  • AHP
  • K-means
  • Kohenen neural network

[1]        Taghavi Fard, M.T., Mansori, T., NaserZadeh. M.R., Ferasat. A.R., Data mining and its application in decision making, Journal of Management Knowledge 79(1), 2007, pp. 3-14. (in Persian).

[2]        Jahangiri, M., Ahmadi, M.R., Naderi Dehkordi, M., Application of data mining in the insurance industry and customer categories, National Conference on Computer Engineering and Information Technology Management. 2014.  (in Persian).

[3]        Marbán, O., Segovia, J., Menasalvas, E., & Fernández-Baizán, C. Toward data mining engineering: A software engineering approach. Information systems, 34(1), 2009. pp. 87-107.

[4]        Nori Borojerdi, P., Eskandari, V., Introduction to Quantitative Studies in Management (Case study: Data mining application in management studies), 1(3), 2010, pp. 1-13. (in Persian).

[5]        Gharekhani, M., Abolghasemi, M. Data mining applications in the insurance industry, Journal of New Worlds Insurance, 158, 2011, pp.5-22.

[6]        Kantardzic, M. Data mining: concepts, models, methods, and algorithms. John Wiley & Sons. 2011.

[7]        Larose, D. T. Discovering knowledge in data: an introduction to data mining. John Wiley & Sons. 2014.

[8]        Valente J & Pedrycz, W. (Eds.). Advances in fuzzy clustering and its applications. New York: Wiley. 2007.

[9]        Hsu, C. H. Data mining to improve industrial standards and enhance production and marketing: An empirical study in apparel industry. Expert Systems with Applications, 36(3), 2009, pp. 4185-4191.

[10]     Decker, R., Monien, K., Market basket analisis with neural gas network and self-organising maps, Journal of Targeting, Measurement and Analysis for Marketing,11(4), 2003, pp. 373-386.

[11]     Ghaseminezhad, M.H., & Karimi, A. A novel self-organizing map (SOM) neural network for discrete groups of data clustering, Applied Soft Computing, 11, 2011, pp. 3771-3787.

[12]     Shin, H. W., & Sohn, S. Y. Segmentation of stock trading customers according to potential value. Expert systems with applications, 27(1), 2004, 27-33.

[13]     Rad, A., Naderi, B., & Soltani, M. Clustering and ranking university majors using data mining and AHP algorithms: A case study in Iran. Expert Systems with Applications, 38(1), 2011, pp. 755-763.

[14]     Hanafi Zadeh, P., Rastkhisz Paydar, N. Comparison between two data mining methods in segmentation of car insurance customers (Case Study: Mellat Insurance Company), Industrial Management Studies, 11(30), 2013, pp. 77-98. (in Persian).

[15]     Bai, C., Dhavale, D., & Sarkis, J. Integrating Fuzzy C-Means and TOPSIS for performance evaluation: An application and comparative analysis. Expert Systems with Applications, 41(9), 2014, pp. 4186-4196.

[16]     Lolli, F., Ishizaka, A., & Gamberini, R. New AHP-based approaches for multi-criteria inventory classification. International Journal of Production Economics, 156, 2014, pp. 62-74.

[17]     Huang, X., & Ye, Y., & Xiong, L., & Lau, R.Y.K., & Jiang, N., & Wang, Sh., Time series k-means: A new k-means type smooth subspace
clustering for time series data, Information Sciences, 13(1), 2016, pp. 367-368.

[18]     Bashiri mousavi S.A, Afsar A., Mahjubifard A. "Customer value analysis in bank with data mining technique and fuzzy analytic hierarchy process", Management Researches in Iran, 19(1), 2015, pp. 23-43, (in Persian).

[19]     Boroufar, A.,  Rezaeian, A.,  Shokohyar, S., “Identifying the customer behavior model in life insurance Sector using data mining, Management Researches in Iran, 20(4), 2016, pp. 65-94.

[20]     Fazli,S., Jamaati Tafti, R. Preprocessing Multiple Criteria Decision-Making Using Data Mining (Case Study: Selection of third party logistic in outsourcing warranty services of an electronic facilities company), Modern Researches in Decision Making, 2(3), 2017, pp. 215-239. (in Persian).

[21]     Hillerman, T., Carlos, H., Carla., A. Rommel, N. Applying clustering and AHP methods for evaluating suspect healthcare claims, Journal of computational science, 19, 2017, pp. 97-111.

[22]     Bryson, Osei. Muata, Kweku. Towards supporting expert evaluation of clustering results using a data mining process model. Information Sciences, 180(3), 2010, pp. 414-431.

[23]     Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R., CRISP-DM 1.0 Step-by-step data mining guide 2000. SPSS Inc. 2008.