مدلی جهت اولویت‌بندی پویای تجهیزات و حالات شکست بحرانی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت تولید و عملیات، پردیس بین الملل کیش، دانشگاه تهران، کیش، ایران

2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران

3 استادیار، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران

4 دانشیار، گروه مدیریت صنعتی، دانشکده مدیریت، دانشگاه تهران، تهران، ایران

چکیده

یکی از روش‌هایی که در تحلیل ریسک عملیات نگهداری و تعمیرات توسط پژوهشگران به‌طور گسترده مورداستفاده قرار گرفته است، تجزیه‌وتحلیل اثر و حالات شکست است؛ اما رویکرد مرسوم تجزیه‌وتحلیل اثر و حالات شکست (FMEA) برای اولویت‌بندی تجهیزات و حالات شکست، با اشکالات اساسی روبرو است. هدف این مقاله اولویت‌بندی پویای تجهیزات در محیط فازی شهودی با مقادیر بازه‌ای به منظور شناسایی تجهیزات بحرانی است، به طوری که نواقص رویکرد مرسوم تجزیه‌وتحلیل اثر و حالات شکست را نداشته باشد. بدین منظور ابتدا روش وزن دهی پویای مبتنی بر وضعیت فازی شهودی با مقادیر بازه‌ای (IVIF-CBDW) ارائه شده است. در این روش، وزن‌های پویای متناسب با هر تجهیز محاسبه‌شده و بنابراین رتبه‌بندی پویایی جهت تجهیزات ارائه می‌گردد. همچنین ضمن بهبود عملگر تجمیع هرونیان وزنی توانی فازی شهودی با مقادیر بازه‌ای و بهبود روش مقایسه محدوده تقریبی مرزی چندنگرشه (MABAC)، این دو روش بهبودیافته با روش وزن دهی پویای مبتنی بر وضعیت فازی شهودی با مقادیر بازه‌ای (IVIF-CBDW) در هم ادغام‌شده و یک مدل تجزیه‌وتحلیل اثر و حالات شکست قوی پیشنهاد گردیده که در آن نقاط ضعف اصلی تجزیه‌وتحلیل اثر و حالات شکست مرسوم برطرف شده است. برای نشان دادن قابلیت کاربردی بودن، این مدل در یک مطالعه موردی برای اولویت‌بندی تجهیزات یک بارج جرثقیلHL5000 به‌کارگیری شده است. در پایان نتایج حاصل از این مدل با چندین روش اولویت‌بندی مقایسه و تحلیل شده و نشان داده شده است که مدل ارائه‌شده در محاسبه وزن و رتبه‌بندی پویای تجهیزات و حالات شکست بحرانی، بسیار منعطف تر عمل می‌کند و نتایج رتبه‌بندی منطقی‌تری را ارائه می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

A Model for dynamic prioritization of equipment and critical failure modes

نویسندگان [English]

  • Mohammad Reza Mahmoudi 1
  • Ahmad Jafarnjad Chaghoshi 2
  • Hannan Amoozad MAHDIRAJI 3
  • Hossein Safari 4
1 Ph.D. student of production & operation management, Kish International Campus, University of Tehran, Kish, Iran
2 Professor, Faculty of Management, University of Tehran, Tehran, Iran
3 Associate Professor, Faculty of Management, University of Tehran, Tehran, Iran
4 Associate Professor, Faculty of Management, University of Tehran, Tehran, Iran
چکیده [English]

One of the methods widely used by researchers to analyze the risk of maintenance operations is Failure Modes and Effects Analysis (FMEA). However, the conventional approach of the FMEA faces serious drawbacks to rank equipment and failure modes. The purpose of this paper is to dynamically rank equipment in an Interval-Valued Intuitionistic Fuzzy environment to identify critical equipment, So that the main drawbacks of the conventional FMEA are eliminated. To this end, we present the Interval-Valued Intuitionistic Fuzzy condition based dynamic weighing method (IVIF-CBDW). In following, by improving the interval-valued intuitionistic fuzzy power weight Heronian aggregation (IVIFPWHA) operator and improving the approach of multi attributive border approximation area comparison (MABAC) method, these two improved methods by Interval-Valued Intuitionistic Fuzzy condition based dynamic weighing method (IVIF-CBDW) have been merged and a robust FMEA model has been proposed in which the main drawbacks of the conventional FMEA have been eliminated. In order to prove its applicability, this model was used in a case study to rank the equipment of a HL5000 crane barge. Finally, the results are compared with the traditional FMEA methods. It is indicated that the proposed model is much more flexible and provides more rational results.

کلیدواژه‌ها [English]

  • Failure Modes and Effects
  • Critical equipment
  • Interval-Valued Intuitionistic Fuzzy Sets (IVIFSs)
  • multi attributive border approximation area comparison (MABAC) method
  • dynamic prioritization

[1]      Dickerson, Deborah E., Paul J. Ackerman. "Risk-based Maintenance Management of U.S. Public School Facilities". Procedia Engineering, no. 145, 2016, pp. 685-692.

[2]      Okoro, Uzoma, Athanasios Kolios, Lin Cui." Multi-criteria risk assessment approach for components risk ranking – The case study of an offshore wave energy converter". International Journal of Marine Energy, no. 17, 2017, pp. 21-39.

[3]      Sainz, J.A. &M.A. Sebastián. “Methodology for the Maintenance Centered on the Reliability on facilities of low accessibility” Procedia Engineering, no. 63, 2013, pp. 852-860.

[4]      Kiran S., Prajeeth, Kumar K.P., Sreejith B., Muralidharan M. "Reliability evaluation and Risk based maintenance in a process plant". Procedia Technology, no. 24, 2016, pp. 57-583.

[5]      Mkandawire, Burnet O’Brien, Nelson Ijumba, Akshay Saha. "Transformer risk modeling by stochastic augmentation of reliability-centered maintenance". Electric Power Systems Research, no. 119, 2015, pp. 471-477.

[6]      Adar, Elanur, Mahir _Ince, Buket Karatop, Mehmet Sinan Bilgili. "The risk analysis by failure mode and effect analysis (FMEA) and fuzzy-FMEA of supercritical water gasification system used in the sewage sludge treatment". Journal of Environmental Chemical Engineering, no. 5, 2017, pp. 1261-1268.

[7]      Ahn, Junkeon, Yeelyong Noh, Sung Ho Park, ByungIl Choi, Daejun Chang. "Fuzzy-based failure mode and effect analysis (FMEA) of a hybrid molten carbonate fuel cell (MCFC) and gas turbine system for marine propulsion". Journal of Power Sources, no. 364, 2017, pp. 233-226.

[8]      Wang, Li-En, Hu-Chen Liu,, Mei-Yun Quan. "Evaluating the risk of failure modes with a hybrid MCDM model under interval-valued intuitionistic fuzzy environments". Computers & Industrial Engineering, no. 102, 2016, pp. 175–185.

[9]      Liu, Hu-Chen, Jian-Xin You, Chun-Yan Duan. "An integrated approach for failure mode and effect analysis under interval valued intuitionistic fuzzy environment. International Journal of Production Economics, 2017, In Press. http://dx.doi.org/11/0016/j.ijpe.2017.03.008

[10]   Zhao, Hao, Jian-Xin You, Hu-Chen Liu. "Failure mode and effect analysis using MULTIMOORA method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment". Soft Comput, no.21, 2017, pp.5355–5367.

[11]   Huang, Jia, Zhaojun (Steven) Li, Hu-Chen Liu. "New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method". Reliability Engineering and System Safety, no. 167, 2017, pp. 302–309.

[12]   Certa, Antonella, Fabrizio Hopps, Roberta Inghilleri, Concetta Manuela La Fata " A Dempster-Shafer Theory-based approach to the Failure Mode, Effects and Criticality Analysis (FMECA) under epistemic uncertainty: application to the propulsion system of a fishing vessel". Reliability Engineering and System Safety, no. 159, 2016, pp. 69–79.

[13]   Mirghafoori, Seyed Habibollah, Faezeh Asadian Ardakani, Fatemeh Azizi. "Developing a Method for Risk Analysis in Tile and Ceramic Industry Using Failure Mode and Effects Analysis by Data Envelopment Analysis". Iranian Journal of Management Studies (IJMS), vol.7, no.2, 2014, pp. 363-343.

[14]   Carmignani, Gionata. "An integrated structural framework to cost-based FMECA: The priority-cost FMECA". Reliability Engineering and System Safety, no. 94, 2009, pp. 861–871.

[15]   Kmenta S., Fitch P., Ishii K. "Advanced failure modes and effect analysis of complex processes". ASME design engineering technical conference, September, Las Vegas, 1999.

[16]   Garg, Harish. "A new generalized improved score function of interval valued intuitionistic fuzzy sets and applications in expert systems". Applied Soft Computing, no. 38, 2016, pp.988–999.

[17]   K.T. Atanassov. "Intuitionistic fuzzy sets". Fuzzy Sets and Systems. vol. 2, no.1, 1986, pp. 87_96.

[18]   K.T. Atanassov, G. Gargov. "Interval-valued intuitionistic fuzzy sets". Fuzzy Sets Systems, vol. 31, no.3, 1989, pp. 343–349.

[19]   V.Torra, "Hesitant fuzzy sets". International Journal of Intelligent Systems, vol. 25, no.6, 2010, pp. 529–539.

[20]   Hamidi, N., akbari shemirani, r., Shirdel, G., & Taleshi, B. Selection of optimal supplier using a hybrid fuzzy model based on criteria interrelationship: A case study of an Iranian braking system manufacturer company. Management Research in Iran, vol.16, no.3, 2012, pp. 59-81.

[21]   Jafari, S. M., Zarei Matin, H., & Jokar, S. Identifying and Prioritizing the Values of E-governance in Municipalities. Management Research in Iran,vol. 20, no.3,2016, pp. 73-104.

[22]   Parsaei, m., & Nili Ahmadabadi, m. Prioritizing Maintenance Strategies with a Combination Approach DEMATEL-ANP-COPRAS in Auto Parts Manufacturing Industry Case Study: Milad Company of Qom. Modern Researches in Decision Making, vol. 2no. 1, 2017, pp. 29-50.

[23]   Baykasoglu, Adil, Ilker Golcuk, " Comprehensive fuzzy FMEA model: a case study of ERP implementation risks". Operational Research, vol.17no. 1, 2017, pp. 1-32.

[24]   Tooranloo, Hossein Sayyadi, Arezoosadat Ayatollah. "A model for failure mode and effects analysis based on intuitionistic fuzzy approach". Applied Soft Computing, no. 49, 2016, pp. 238–247.

[25]   Liu, Peide."Multiple attributes group decision making method based on interval-valued intuitionistic fuzzy power Heronian aggregation". Computers & Industrial Engineering, no. 108, 2017, pp. 199–212.

[26]   Pamucar, Dragan, Goran Cirovic. "The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC)". Expert Systems with Applications, no. 42, 2015, pp. 3016–3028.

[27]   Ejegwa, P. A., S.O. Akowe, P.M. Otene, J.M. Ikyule. "An Overview on Intuitionistic Fuzzy Sets". international journal of scientific & technology research,vol. 3no. 3, 2014), pp. 142-145.

[28]   L. Zadeh. "Fuzzy sets". Information and Control 8 (1965) 338–353.

[29]   K. Atanassov. "Remark on intuitionistic fuzzy expert systems". BUSEFAL, no. 59, 1994 pp. 71–76.

[30]   Sahin, R. Fuzzy multi criteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets. Soft Computing, no. 20, 2016, pp. 2557–2563.

[31]   Z.S. Xu, J. Chen. "An overview of distance and similarity measures of intuitionistic fuzzy sets ". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 16, no.4, 2008, pp529−555..

[32]   Nguyen, H. "A new knowledge-based measure for intuitionistic fuzzy sets and its application in multiple attribute group decision making". Expert Systems with Applications, no. 42, 2015, pp. 8766–8774.

[33]   Z.S. Xu, J. Chen, "On geometric aggregation over interval-valued intuitionistic fuzzy information". In Proceedings of the fourth international conference on fuzzy systems and knowledge discovery, (FSKD 2007), Haikou,china, no. 9909269, 2007, pp. 466–471. doi: 10.1109/FSKD.2007.427.