یک مدل دو هدفه MILP برای اندازه‌گیری و زمان‌بندی تولید: رویکرد برنامه‌ریزى آرمانی فازی احتمالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

2 استاد، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

چکیده

 در این مقاله یک مدل برنامه‌ریزی خطی عدد صحیح مختلط دو هدفه برای مسئله تعیین اندازه و زمان‌بندی تولید برای صنعت ماست به عنوان یک صنعت خوراکی فاسد شدنی  تحت شرایط عدم اطمینان تقاضا ارائه می شود. اهداف مدل پیشنهادی، به حداقل رساندن همزمان هزینه کل و زمان اتمام تولید است. مدل پیشنهادی، بسیاری از ویژگی‌های متمایز فرآوری ماست را شامل می‌شود، از جمله ماندگاری ، تنظیمات ، نرخ بسته‌بندی ، حداقل و حداکثر اندازه تولید ، زمان آینده برای نگهداری محصولات و تقاضای فازی. علاوه بر این، مدل پیشنهادی ، شامل کنترل موجودی چند محصول و چند دوره است. از این رو، به عنوان یک مدل عملیاتی - استراتژیک طبقه‌بندی می‌شود. ما یک رویکرد ترکیبی متمرکز بر برنامه‌ریزی امکانی فازی و برنامه‌ریزی آرمانی فازی را برای حل مدل پیشنهادی دو هدفه ارائه می‌کنیم ، جایی که اقدامات امکان ، ضرورت و اعتبار مطابق با ترجیح تصمیم‌گیرندگان اتخاذ می‌شود. در مقایسه با مدل سنتی اندازه و زمان‌بندی تولید، تصمیم‌گیری و تجزیه‌وتحلیل حساسیت بهتری را می توان برای DMs  بر اساس داده‌های سه مقدار کارایی به دست آمده، انجام داد. داده‌های به دست آمده از صنعت ماست، برای ارزیابی امکان‌سنجی مدل پیشنهادی و رویکرد راه حل استفاده شد. نتایج به دست آمده از اعمال روش و تجزیه‌وتحلیل حساسیت، اثربخشی مدل ریاضی و همچنین روش پیشنهادی را نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

A bi-objective MILP model for lot sizing and scheduling problem: possibilistic fuzzy goal programming approach

نویسندگان [English]

  • Maisaa mosa 1
  • Adel Azar 2
  • Ali Rajabzadeh Ghatari 2
1 PhD Student, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran
2 Professor, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran
چکیده [English]

 This paper proposes a bi-objective mixed-integer linear programming model for formulating a lot- sizing and scheduling problem for the perishable yogurt industry under demand uncertainty. The objectives of the proposed model are to simultaneously minimize the overall cost and the total production completion time.  The proposed MILP formulation integrates many distinctive features of yogurt processing, including shelf-life constraints, setups, packaging rates, minimum and maximum lot size limits, future time for holding products, and fuzzy demand. Additionally, the proposed model, including inventory control, is a multi-product and multi-period model hence, it is categorized as an operational-strategic model. We introduce a hybrid approach focused on fuzzy possibility programming and a fuzzy goal programming approach for solving the suggested bi-objective model, where possibility, necessity and credibility measures are adopted according to the decision makers’ preference.  Compared to the traditional model of lot sizing and scheduling, better decision-making and sensitivity analysis for DMs can be made based on the three obtained efficiency values. Data from the yogurt plant were used to assess the feasibility of the proposed model and solution approach. The results obtained from applying the method and sensitivity analysis showed the effectiveness of the mathematical formulation as well as the proposed solution method.

کلیدواژه‌ها [English]

  • Lot sizing and scheduling problem
  • Perishable products
  • Yogurt plant
  • Uncertainty
  • Fuzzy possibility programming
  • Goal programming approach
[1]      Kopanos, G. M., Puigjaner, L., & Georgiadis, M. C. (2010). Optimal production scheduling and lot-sizing in dairy plants: the yogurt production line. Industrial & Engineering Chemistry Research, 49(2), 701-718.
[2]      Kopanos, G. M., Puigjaner, L., & Georgiadis, M. C. (2011). Resource-constrained production planning in semicontinuous food industries. Computers & Chemical Engineering, 35(12), 2929-2944.
[3]      Rao, V. D. P., Subbaiah, K. V., & Raju, V. R. (2009). Fuzzy genetic approach to economic lot–size scheduling problem. JJMIE3(1), 9-16.
[4]      Tayyab, M., Sarkar, B., & Ullah, M. (2019). Sustainable lot size in a multistage lean-green manufacturing process under uncertainty. Mathematics, 7(1), 20.
[5]      Amorim, P., Antunes, C. H., & Almada-Lobo, B. (2011). Multi-objective lot-sizing and scheduling dealing with perishability issues. Industrial & Engineering Chemistry Research, 50(6), 3371-3381.
[6]      Chiu, Y. P., Chiang, K. W., Chiu, S. W., & Song, M. S. (2016). Simultaneous determination of production and shipment decisions for a multi-product inventory system with a rework process. Advances in Production Engineering & Management11(2).
[7]      Sel, Ç., Bilgen, B., & Bloemhof-Ruwaard, J. (2017). Planning and scheduling of the make-and-pack dairy production under lifetime uncertainty. Applied Mathematical Modelling, 51, 129-144.
[8]      Bilgen, B., & Çelebi, Y. (2013). Integrated production scheduling and distribution planning in dairy supply chain by hybrid modelling. Annals of Operations Research, 211(1), 55-82.
[9]      Doganis, P., & Sarimveis, H. (2007). Optimal scheduling in a yogurt production line based on mixed integer linear programming. Journal of Food Engineering, 80(2), 445-453.
[10]   Doganis, P., & Sarimveis, H. (2008). Optimal production scheduling for the dairy industry. Annals of Operations Research, 159(1), 315-331.
[11]   Doganis, P., & Sarimveis, H. (2008). 16 Mixed Integer Linear Programming Scheduling in the Food Industry. Optimization in Food Engineering, 305.
[12]   Marinelli, F., Nenni, M. E., & Sforza, A. (2007). Capacitated lot sizing and scheduling with parallel machines and shared buffers: A case study in a packaging company. Annals of Operations Research, 150(1), 177-192.
[13]   Bilgen, B., & Dogan, K. (2015). Multistage production planning in the dairy industry: a mixed-integer programming approach. Industrial & Engineering Chemistry Research, 54(46), 11709-11719.
[14]   Stefansdottir, B., Grunow, M., & Akkerman, R. (2017). Classifying and modeling setups and cleanings in lot sizing and scheduling. European Journal of Operational Research, 261(3), 849-865.
[15]   Kopanos, G. M., Puigjaner, L., & Georgiadis, M. C. (2012). Efficient mathematical frameworks for detailed production scheduling in food processing industries. Computers & Chemical Engineering, 42, 206-216.
[16]   Kopanos, G. M., Puigjaner, L., & Georgiadis, M. C. (2011). Production scheduling in multiproduct multistage semicontinuous food processes. Industrial & Engineering Chemistry Research, 50(10), 6316-6324.
[17]   Kopanos, G. M., Puigjaner, L., & Georgiadis, M. C. (2012). Simultaneous production and logistics operations planning in semicontinuous food industries. Omega, 40(5), 634-650.
[18]   Sel, C., Bilgen, B., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. (2015). Multi-bucket optimization for integrated planning and scheduling in the perishable dairy supply chain. Computers & Chemical Engineering, 77, 59-73.
[19]   Copil, K., Wörbelauer, M., Meyr, H., & Tempelmeier, H. (2017). Simultaneous lotsizing and scheduling problems: a classification and review of models. OR Spectrum, 39(1), 1-64.
[20]   Brahimi, N., Absi, N., Dauzère-Pérès, S., & Nordli, A. (2017). Single-item dynamic lot-sizing problems: An updated survey. European Journal of Operational Research, 263(3), 838-863.
[21]   Amorim, P., Costa, A. M., & Almada-Lobo, B. (2014). Influence of consumer purchasing behaviour on the production planning of perishable food. OR Spectrum, 36(3), 669-692.
[22]   Aghamohammadi-Bosjin, S., Rabbani, M., & Tavakkoli-Moghaddam, R. (2020). Agile two-stage lot-sizing and scheduling problem with reliability, customer satisfaction and behaviour under uncertainty: a hybrid metaheuristic algorithm. Engineering Optimization, 52(8), 1323-1343.
[23]   Alem, D., Curcio, E., Amorim, P., & Almada-Lobo, B. (2018). A computational study of the general lot-sizing and scheduling model under demand uncertainty via robust and stochastic approaches. Computers & Operations Research, 90, 125-141.
[24]   Curcio, E., Amorim, P., Zhang, Q., & Almada-Lobo, B. (2018). Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty. International Journal of Production Economics, 202, 81-96.
[25]   Georgiadis, G. P., Kopanos, G. M., Karkaris, A., Ksafopoulos, H., & Georgiadis, M. C. (2019). Optimal production scheduling in the dairy industries. Industrial & Engineering Chemistry Research58(16), 6537-6550.
[26]   Soman, C. A., Donk, D. V., & Gaalman, G. J. C. (2004). A basic period approach to the economic lot scheduling problem with shelf life considerations. International Journal of Production Research, 42(8), 1677-1689.
[27]   Lai, Y. J., & Hwang, C. L. (1992). A new approach to some possibilistic linear programming problems. Fuzzy Sets and Systems, 49(2), 121-133.
[28]   Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
[29]   Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55.
[30]   Lai, Y. J., & Hwang, C. L. (1992). Fuzzy mathematical programming. In Fuzzy mathematical programming (pp. 74-186). Springer, Berlin, Heidelberg.
[31]   Soysal, M., Bloemhof-Ruwaard, J. M., Haijema, R., & van der Vorst, J. G. (2015). Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty. International Journal of Production Economics, 164, 118-133.
[32]   Tong, K., Gleeson, M. J., Rong, G., & You, F. (2014). Optimal design of advanced drop-in hydrocarbon biofuel supply chain integrating with existing petroleum refineries under uncertainty. Biomass and Bioenergy, 60, 108-120.
[33]   Mohammed, A., & Wang, Q. (2017). Developing a meat supply chain network design using a multi-objective possibilistic programming approach. British Food Journal.
[34]   Mousavi, S. M., Tavakkoli-Moghaddam, R., & Jolai, F. (2013). A possibilistic programming approach for the location problem of multiple cross-docks and vehicle routing scheduling under uncertainty. Engineering Optimization, 45(10), 1223-1249.
[35]   Niakan, F., & Rahimi, M. (2015). A multi-objective healthcare inventory routing problem; a fuzzy possibilistic approach. Transportation Research Part E: Logistics and Transportation Review, 80, 74-94.
[36]   Torabi, S. A., Namdar, J., Hatefi, S. M., & Jolai, F. (2016). An enhanced possibilistic programming approach for reliable closed-loop supply chain network design. International Journal of Production Research, 54(5), 1358-1387.
[37]   Sun, Y., Liang, X., Li, X., & Zhang, C. (2019). A fuzzy programming method for modeling demand uncertainty in the capacitated road–rail multimodal routing problem with time windows. Symmetry, 11(1), 91.