بهینه سازی مسئله زمان‌بندی سبز جریان کارگاهی ترکیبی به همراه سیستم ارسال بسته‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع و مدیریت، دانشکده مهندسی صنایع و مدیریت دانشگاه صنعتی شاهرود،شاهرود، ایران

2 دانشجوی کارشناسی ارشد، گروه مهندسی صنایع و پیشرفت دانشکده مهندسی پصنایع و پیشرفت، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

با افزایش رقابت بین تولیدکنندگان در جهت پاسخ به نیازهای مشتریان، برنامه ریزی فرآیندهای تولیدی در قالب زنجیره های تامین پیچیده تر شده اند. تولیدکنندگان از یکسو به منظور ایجاد مزیت رقابتی ناچار به تولید با کمترین هزینه می باشند. از سوی دیگر الزامات زیست محیطی و توجه به تولید پایدار سبب توجه بیشتر به مصرف انرژی در سیستم های تولیدی شده است. در این پژوهش برای اولین بار مسئله زمانبندی سبز در محیط جریان کارگاهی ترکیبی به همراه سیستم ارسال بسته‌ای سفارش ها برای مشتریان مورد بررسی قرار می گیرد. بدین منظور یک مدل برنامه ریزی خطی عددصحیح دو هدفه ارائه می گردد. هدف اول مسئله مینیمم کردن مجموع هزینه مربوط به مجموع زمان های تکمیل کارها و هزینه های ارسال بسته ای می باشد. هدف دوم به دنبال مینیمم کردن مصرف انرژی است. مدل ریاضی با کمک روش محدودیت اپسیلون تک هدفه شده و تعدادی مسئله تصادفی با کمک آن مورد ارزیابی و تحلیل همه جانبه قرار می گیرد و تاثیرگذاری توجه به مصرف انرژی بر زمانبندی تولید سفارش ها ارائه می گردد. همچنین با توجه به NP-hard بودن مسئله، جهت حل مسائل بزرگ، از یک الگوریتم MOTLBO استفاده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of green hybrid flow shop scheduling problem with considering batch delivery system

نویسندگان [English]

  • Mohammad Rostami 1
  • Amir Sabripour 2
1 Assistant Professor, Department of Industrial Engineering and Management, Faculty of Industrial Engineering and Management, Shahrood University of Technology, Shahrood, Iran
2 Master's student, Department of Industrial Engineering and Advancement, Faculty of Industrial Engineering and Advancement, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

With the increasing competition between manufacturers to respond to customers' requirements, the production planning processes in the form of supply chains has become more complex. On the one hand, manufacturers have to produce at the lowest cost in order to create a competitive advantage. On the other hand, environmental requirements and attention to sustainable production have caused more attention to energy consumption in production systems. In this research, for the first time, the green hybrid flow shop scheduling problem is investigated with considering batch delivery system. For this purpose, a bi-objective integer linear programming model is presented. The first goal of the problem is to minimize the total cost related to the total jobs completion times and the costs of dispatching the batches. The second goal is to minimize energy consumption. The mathematical model is converted to a single objective model using Ɛ-constraint method and a number of random instances are evaluated and comprehensively analyzed with its help, and the effect of paying attention to energy consumption on the scheduling of orders is presented. Also, due to the NP-hardness of the problem, an MOTLBO algorithm has been adopted to solve large size instances.

کلیدواژه‌ها [English]

  • Hybrid flow shop
  • Scheduling
  • Batch delivery system
  • Energy consumption
  • Bi-objective mathematical model
[1]    B. Zhang, Q.-k. Pan, L. Gao, X.-l. Zhang, and K.-k. Peng, "A multi-objective migrating birds optimization algorithm for the hybrid flowshop rescheduling problem," Soft Computing, vol. 23, no. 17, pp. 8101-8129, 2019.
[2]    T.-P. Chung, H. Sun, and C.-J. Liao, "Two new approaches for a two-stage hybrid flowshop problem with a single batch processing machine under waiting time constraint," Computers & Industrial Engineering, vol. 113, pp. 859-870, 2017.
[3]    I. Rastgar, J. Rezaeian, I. Mahdavi, and P. Fattahi, "Integrated production planning and scheduling with maintenance constraints in hybrid flow shop environment," Modern Research in Decision Making, vol. 7, no. 2, pp. 1-27, 2022.
[4]    C. Yu, Q. Semeraro, and A. Matta, "A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility," Computers & Operations Research, vol. 100, pp. 211-229, 2018.
[5]    I. Módos, P. Šucha, and Z. Hanzálek, "On parallel dedicated machines scheduling under energy consumption limit," Computers & Industrial Engineering, vol. 159, p. 107209, 2021.
[6]    A. Niusha, A. Azar, H. Moazzez, and K. Heydari, "A multi-objective optimization model for iran's renewable power portfolio," Management Research in Iran, vol. 23, no. 1, pp. 171-191, 2021.
[7]    H. Hassanpour, M. Soltani Tehrani, and S. Ramezani, "Two-objective optimization model of costs and carbon dioxide in closed loop supply chain," Management Research in Iran, vol. 19, no. 1, pp. 169-189, 2021.
[8]    K. Fang, N. Uhan, F. Zhao, and J. W. Sutherland, "A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction," Journal of Manufacturing Systems, vol. 30, no. 4, pp. 234-240, 2011.
[9]    S. A. Mansouri, E. Aktas, and U. Besikci, "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, vol. 248, no. 3, pp. 772-788, 2016.
[10]  R. Ramezanian, M. M. Vali-Siar, and M. Jalalian, "Green permutation flowshop scheduling problem with sequence-dependent setup times: a case study," International Journal of Production Research, vol. 57, no. 10, pp. 3311-3333, 2019.
[11]  B. Zhang, Q.-K. Pan, L. Gao, L.-L. Meng, X.-Y. Li, and K.-K. Peng, "A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 12, pp. 4984-4999, 2019.
[12]  C.-H. Liu and D.-H. Huang, "Reduction of power consumption and carbon footprints by applying multi-objective optimisation via genetic algorithms," International Journal of Production Research, vol. 52, no. 2, pp. 337-352, 2014.
[13]  M. Li and G.-G. Wang, "A Review of Green Shop Scheduling Problem," Information Sciences, 2022.
[14]  N. G. Hall and C. N. Potts, "Supply chain scheduling: Batching and delivery," Operations Research, vol. 51, no. 4, pp. 566-584, 2003.
[15]  Y. Yin, T. Cheng, C.-J. Hsu, and C.-C. Wu, "Single-machine batch delivery scheduling with an assignable common due window," Omega, vol. 41, no. 2, pp. 216-225, 2013.
[16]  M. M. Mazdeh, M. Rostami, and M. H. Namaki, "Minimizing maximum tardiness and delivery costs in a batched delivery system," Computers & Industrial Engineering, vol. 66, no. 4, pp. 675-682, 2013.
[17]  M. Rostami, O. Kheirandish, and N. Ansari, "Minimizing maximum tardiness and delivery costs with batch delivery and job release times," Applied Mathematical Modelling, vol. 39, no. 16, pp. 4909-4927, 2015.
[18]  A. Hamidinia, S. Khakabimamaghani, M. M. Mazdeh, and M. Jafari, "A genetic algorithm for minimizing total tardiness/earliness of weighted jobs in a batched delivery system," Computers & Industrial Engineering, vol. 62, no. 1, pp. 29-38, 2012.
[19]  F. Ahmadizar and S. Farhadi, "Single-machine batch delivery scheduling with job release dates, due windows and earliness, tardiness, holding and delivery costs," Computers & Operations Research, vol. 53, pp. 194-205, 2015.
[20]  M. Khodabandeh, S. R. Hejazi Taghanaki, and M. Rasti-Barzoki, "A Heuristic Method to Minimize Total Weighted Number of Tardy Jobs and Transportation Costs for an Integrated Production and Distribution Problem with VRP," Modern Research in Decision Making, vol. 3, no. 3, pp. 55-78, 2018.
[21]  A. Gharaei and F. Jolai, "A Pareto approach for the multi-factory supply chain scheduling and distribution problem," Operational Research, vol. 21, no. 4, pp. 2333-2364, 2021.
[22]  M. M. Mazdeh and M. Rostami, "A branch-and-bound algorithm for two-machine flow-shop scheduling problems with batch delivery costs," International Journal of Systems Science: Operations & Logistics, vol. 1, no. 2, pp. 94-104, 2014.
[23]  M. Kong, J. Pei, J. Xu, X. Liu, X. Yu, and P. M. Pardalos, "A robust optimization approach for integrated steel production and batch delivery scheduling with uncertain rolling times and deterioration effect," International Journal of Production Research, vol. 58, no. 17, pp. 5132-5154, 2020.
[24]  K. Wang, H. Luo, F. Liu, and X. Yue, "Permutation flow shop scheduling with batch delivery to multiple customers in supply chains," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 10, pp. 1826-1837, 2017.
[25]  H. Kazemi, M. M. Mazdeh, and M. Rostami, "The two stage assembly flow-shop scheduling problem with batching and delivery," Engineering Applications of Artificial Intelligence, vol. 63, pp. 98-107, 2017.
[26]  M. Rostami and S. Shad, "A Hybrid Bee Algorithm for Two-Machine Flow-Shop Scheduling Problems with Batch Delivery," Journal of Quality Engineering and Production Optimization, vol. 5, no. 1, pp. 137-164, 2020.
[27]  Q. Li, J. Li, X. Zhang, and B. Zhang, "A wale optimization algorithm for distributed flow shop with batch delivery," Soft Computing, vol. 25, no. 21, pp. 13181-13194, 2021.
[28]  R. V. Rao, V. J. Savsani, and D. Vakharia, "Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems," Computer-aided design, vol. 43, no. 3, pp. 303-315, 2011.
[29]  D. Li, C. Zhang, X. Shao, and W. Lin, "A multi-objective TLBO algorithm for balancing two-sided assembly line with multiple constraints," Journal of Intelligent Manufacturing, vol. 27, no. 4, pp. 725-739, 2016.
[30]  R. Enayatifar, M. Yousefi, A. H. Abdullah, and A. N. Darus, "MOICA: A novel multi-objective approach based on imperialist competitive algorithm," Applied Mathematics and Computation, vol. 219, no. 17, pp. 8829-8841, 2013.