طراحی مدل ریاضی غیرخطی تولید سلولی با در نظر گرفتن تخصیص اپراتور در سناریوهای مختلف چیدمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری،گروه مدیریت صنعتی،واحد سنندج،دانشگاه آزاد اسلامی،سنندج،ایران.

2 استادیار گروه مهندسی صنایع، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران

3 استادیار، گروه مدیریت، واحد سنندج،دانشگاه آزاد اسلامی،سنندج،ایران .

چکیده

تولید سلولی یکی از مهمترین کاربردهای تکنولوژی گروهی است که سلول‌های تولیدی را به طریقی تشکیل می‌دهد که هر خانواده قطعات در یک سلول توسط یک گروه معین از ماشین‌های مربوط به آن سلول (سلول‌ ماشینی) پردازش شوند. به منظور داشتن یک برنامه ی مناسب و منسجم برای یک تولید خوب و با کیفیت، دو گام مهم در راستای برنامه ریزی تولید باید برداشته شوند: توالی عملیات و زمانبندی. توالی عملیات و زمانبندی یک فرآیند تصمیم گیری است که با تخصیص منابع در طول زمان برای اجرای مجموعه ای از فعالیت ها به منظور بهینه سازی یک یا چند هدف صورت می گیرد. در حقیقت هدف اصلی در مسائل زمانبندی توالی عملیات، تعیین توالی کارها و تخصیص منابع به کارها به نحوی است که یک یا چند هدف بهینه شود. در مدل پیشنهادی، ما بر آن هستیم که با طراحی مدل یکپارچه تشکیل سلول با چیدمان سلول و زمانبندی عملیات‌ها در سیستم تولید سلولی و تخصیص اپراتورها با هدف کمینه کردن زمان تکمیل کارها علاوه بر توجه به عدم همپوشانی سلول‌ها و مشخص کردن موقعیت دقیق ماشین‌ها، به تعیین چیدمان بهینه خود سلول‌ها به طور مستقل در مدلسازی خود بپردازیم و نحوه‌ قرارگیری بهینه سلول‌ها را در کنار هم، مشخص نماییم. در این پژوهش پس از مدلسازی ریاضی غیرخطی و جمع آوری و اندازه گیری داده ها به حل مساله توسط الگوریتم ژنتیک اقدام می گردد و نهایتا بهترین چیدمان پیشنهادی با توجه به هزینه ایجاد شده از بین 3 سناریوی موجود انتخاب خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a nonlinear mathematical model of cellular production considering operator assignment in different layout scenarios

نویسندگان [English]

  • Ahmadipanah Mahdi 1
  • Kamyar Chalaki 2
  • Roya Shakeri 3
1 PhD student, Department of Industrial Management, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
2 Assistant Professor, Department of Industrial Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
3 Assistant Professor, Department of Management, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
چکیده [English]

Cell production is one of the most important applications of group technology that forms production cells in such a way that each family of parts in a cell is processed by a certain group of machines related to that cell (machine cell). In order to have a suitable and coherent plan for a good and quality production, two important steps in production planning should be taken: sequence of operations and scheduling. Sequencing of operations and scheduling is a decision-making process that takes place by allocating resources over time to execute a set of activities in order to optimize one or more objectives. In fact, the main goal in operation sequence scheduling problems is determining the sequence of tasks and allocating resources to tasks in such a way that one or more objectives are optimized. In the proposed model, we intend to design an integrated model of cell formation with cell arrangement and operation scheduling in the cell production system and assigning operators with the aim of minimizing the time to complete the work in addition to paying attention to the non-overlapping of cells and specifying the position. Regarding machines, let's determine the optimal arrangement of the cells independently in our modeling and specify the optimal placement of the cells together. In this research, after nonlinear mathematical modeling and data collection and measurement, the problem is solved by a genetic algorithm, and finally, the best-proposed layout will be selected among the 3 existing scenarios according to the created cost.

کلیدواژه‌ها [English]

  • Cell generation
  • Scenario analysis
  • nonlinear modeling
  • Genetic algorithm
[1].    Khorasani, N., & Esmaelian, M. (2018). Integrating process planning and scheduling taking into account multiple objective using constraint planning. Industrial management journal, 10(4), 677-698.
[2].    Kumar, R., & Singh, S. P. (2019). Modified SA Algorithm for Bi-objective Robust Stochastic Cellular Facility Layout in Cellular Manufacturing Systems. In Advanced Computing and Communication Technologies (pp. 19-33). Springer.
[3].    Raoofpanah, H., Ghezavati, V., & Tavakkoli-Moghaddam, R. (2019). Solving a new robust green cellular manufacturing problem with environmental issues under uncertainty using Benders decomposition. Engineering Optimization, 51(7), 1229-1250.
[4].    Laha, Dipak & Majumder, Arindam. (2021). An Improved Clustering Heuristic in Cellular Manufacturing Systems. International Journal of Operational Research. 1. 1. 10.1504/IJOR.2021.10044762.
[5].    Nahas, N., Nourelfath, M. and Gendreau, M., (2014), Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks, Int. J. of Production Economics, 154: p.113–126.
[6].    Jabal-Ameli, M. S., & Moshref-Javadi, M. (2014). Concurrent cell formation and layout design using scatter search. The International Journal of Advanced Manufacturing Technology, 71(1), 1-22.
[7].    Erenay, B., Suer, G. A., Huang, J., & Maddisetty, S. (2015). Comparison of layered cellular manufacturing system design approaches. Computers & Industrial Engineering, 85, 346-358.
[8].    Niakan, F., Baboli, A., Moyaux, T., & Botta-Genoulaz, V. (2016). A new multi-objective mathematical model for dynamic cell formation under demand and cost uncertainty considering social criteria. Applied Mathematical Modelling, 40(4), 2674-2691.
[9].    Wang, Y. M., Voisin, T., McKeown, J. T., Ye, J., Calta, N. P., Li, Z., ... & Zhu, T. (2018). Additively manufactured hierarchical stainless steels with high strength and ductility. Nature materials, 17(1), 63-71.
[10].    Farughi, Hiwa & Mostafayi Darmian, Sobhan & Afrasiabi, Ahmadreza. (2019). Bi-objective robust optimization model for configuring cellular manufacturing system with variable machine reliability and parts demand: A real case study. 10.22116/JIEMS.2019.93028.
[11].    Soto, Ricardo & Crawford, Broderick & Toledo, Angelo & de la Fuente-Mella, Hanns & Castro, Carlos & Paredes, Fernando & Olivares, Rodrigo. (2019). Solving the Manufacturing Cell Design Problem through Binary Cat Swarm Optimization with Dynamic Mixture Ratios. Computational Intelligence and Neuroscience. 2019. 1-16. 10.1155/2019/4787856.
[12].    Zandieh, Mostafa. (2019). Scheduling of Virtual Cellular Manufacturing Systems: A Biogeography-Based Optimization Algorithm. Applied Artificial Intelligence. 33. 1-27. 10.1080/08839514.2019.1577021.
[13].    Arul Kumar, & Muneeswaran, R & Vivek, J & Nagarajan, J & Raj, J. (2020). Metaheuristic Optimization Algorithms for Solving Fixed Area Cellular Layout Problems. 45. 136-149.
[14].    Akbari, Mohammad. (2016). Mathematical modeling of human factors in the double-constrained system. New researches in decision making. 2(2), 23-49.
[15].    Mourtzis, Dimitris & Siatras, Vasilis & Synodinos, G. & Angelopoulos, John & Panopoulos, Nikos. (2020). A Framework for Adaptive Scheduling in Cellular Manufacturing Systems. Procedia CIRP. 93. 10.1016/j.procir.2020.04.040.
[16].    Rostami, Ahmadreza & Paydar, Mohammad Mahdi & Asadi-Gangraj, Ebrahim. (2020). A Hybrid Genetic Algorithm for Integrating Virtual Cellular Manufacturing with Supply Chain Management Considering New Product Development. Computers & Industrial Engineering. 145. 106565. 10.1016/j.cie.2020.106565.
[17].    ayough, ashkan.(2017).  scheduling job turnover in and out of lean cells with the approach of optimization algorithm based on training and learning. New Researches in Decision Making, 3(4), 153-175.
[18].    Hayati, Jamileh & Abdollahzadeh, Sohrab. (2021). An Integrated Simulation and Virtual Cellular Manufacturing System Concept Approach for Maintenance Policy Selection. Mathematical Problems in Engineering. 2021. 1-10. 10.1155/2021/1306742.
[19].    Reis, Gilmara & Cunha, Edinaldo. (2021). Optimization Of the Manufacturing Process for School Portfolios Through the Implementation of The Cellular Layout. International Journal for Innovation Education and Research. 9. 515-527. 10.31686/ijier.vol9.iss11.3544.
[20].    Rezaeipanah, Amin & Mojarad, Musa. (2021). Modeling the Scheduling Problem in Cellular Manufacturing Systems Using Genetic Algorithm as an Efficient Meta-Heuristic Approach. Journal of Artificial Intelligence and Technology. 10.37965/jait.2021.0018.
[21].    Mohtashmi, Ali, Najafi, Ali, Amiri, Maqsood, Irajpour, Alireza. (2018). Scheduling of truck transports in multiple cross-docking systems with soft time window considering uncertainty in timing parameters. New Researches in Decision Making 4(4), 81-125.
[22].    Wu, L., Li, L, Tan, L., Niu, B., Wang, R., & Feng, Y. (2020). Improved similarity coefficient and clustering algorithm for cell formation in cellular manufacturing systems. Engineering Optimization, 52(11), 1923-1939.
[23].    Zhang, Zhengmin & Guan, Zailin & Fang, Weikang & Yue, Lei. (2022). Dynamic virtual cellular reconfiguration for capacity planning of market-oriented production systems. Journal of Industrial & Management Optimization. 10.3934/jimo.2022009.
[24].    Jafar Nejad, Ahmad, Ismailian, Majid, Rizvani, Mehran. (2022). Locating distribution centers using integer nonlinear programming model. Management Research in Iran, 12(1), 105-125.
[25].    Jaradat, Raed & Paydar, Mohammad Mahdi & Zeidi, Javad & Mahdavi, Iraj & Sharifi, Hamed & Nagahi, Morteza & Nagahisarchoghaei, Mohammad. (2022). A Genetic Algorithm for Designing an Integrated Cellular Manufacturing System Considering a Linear Double-Row Layout. International Journal of Manufacturing Research. 17. 1. 10.1504/IJMR.2022.10037003.
[26].    Rafiei, Hamed and Aida Nazari Goran. (2022). A book about mathematical modeling and how to code problems in GAMS software. Publisher: Cuff. 
[27].    Techamaitrechit, V & Prichanont, S. (2018). Operator Allocation in Procurement Process Using Computer Simulation and Data Envelopment Analysis. Thai Industrial Engineering Network Journal, 4(2), 35-42.
[28].    Bortolini, M, Galizia, F. G. Mora, C. & Pilati, F. (2019). Reconfigurability in cellular manufacturing systems: a design model and multi-scenario analysis. The International Journal of Advanced Manufacturing Technology, 104(9), 4387-4397.
[29].    Sharma, V. Gidwani, B. D. Sharma, V. & Meena, M. L. (2019). Implementation model for cellular manufacturing system using AHP and ANP approach. Benchmarking: An International Journal.